Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • New methods allow concrete testing on the spot
    July 20, 2015
    This month we look at two new methods which are allowing concrete to be tested on the spot, and [over the page] we catch up on the latest news from concrete testing equipment suppliers - Kristina Smith writes Sometimes test results can be very bad news. If the concrete pavement or bridge abutment has already been poured, and if the concrete does not meet the specification, the outcome could be very expensive remedial work.
  • Eurocode regulations assure conformity
    February 28, 2012
    A Europe without borders is an attractive prospect for the construction and design industries, claim supporters of Eurocodes. For all companies involved in the construction and infrastructure sectors, Swedish company Trelleborg for example, new Eurocode regulations will have decisive importance. So says Professor Haig Gulvanessian, one of the experts involved in developing the codes, which are a series of 10 European Standards (EN 1990-EN 1999) providing a common approach for the design of buildings and oth
  • Asphalt and bitumen - testing for performance
    February 29, 2012
    The stresses placed on modern asphalt and bitumen means that specialist equipment is essential to make sure performance specifications are met. As road traffic increases at a rapid pace and road safety becomes a priority issue, asphalt is put under increasingly higher stresses. For example, road surfaces are subject to compression, flexural tensions and tangential stresses: internal friction, depending on the aggregates, and the cohesion, guaranteed by bitumen's composition, are the two main properties whic
  • Speeding repairs of concrete motorway
    April 2, 2014
    A novel technique is now being introduced in the UK that can help cut construction costs, as well as the time needed for road repairs. Connect Plus, the company that finances, operates and upgrades the 400km M25 network on behalf of the UK’s Highways Agency, has pioneered an innovative method for the replacement of life-expired concrete motorway The introduction of this method is helping reduce the delays experienced by drivers by as much as 80% in the sections of road where it is now being implemented.