Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • A vision of roads
    September 3, 2012
    By 2040 European roads could be built differently, and hopefully be safer, according to the EU research programme NR2C
  • Innovative additive for use in recycled asphalt applications
    August 13, 2014
    Biorefiner Arizona Chemical has spent three years developing a new asphalt additive which it says will revolutionise the use of RAP in road pavements. Sylvaroad RP1000 will allow much higher proportions of RAP to be used and produce a better-performing pavement, according to the manufacturer. “What it essentially does is mobilise the chemical matrix of these aged binders,”
  • From rubber to nanotechnology, new additives give longer life
    March 12, 2014
    This month: rubber comes to the rescue for cash-strapped UK authorities and Italian towns plagued by road noise; Japanese nanotechnology fights monsoon damage in India; and a new research programme promises to help define whether ‘sustainable’ bitumen technologies really live up to their billing - Kristina Smith writes A new venture in the UK aims to encourage the use of recycled tyres in road pavements. Billian UK is now manufacturing GTR Pellets which combine bitumen, ground tyre rubber (GTR) and miner
  • Lighting can affect road safety
    February 5, 2013
    New research carried out jointly by the Lighting Research Center and Penn State have identified links between visibility and safety from roadway lighting. The results are said to hold promise for predicting the safety benefits of new lighting configurations. Identifying when and where to install roadway illumination is a challenge for transportation agencies. Estimating nighttime crash reductions from roadway lighting is difficult in part because lighting tends to be installed along with other improvements