Skip to main content

Scottish application for SMA surfacing technology

A new Scottish specification for stone mastic asphalt could help with some of the durability issues sometimes experienced in the UK An alternative specification for stone mastic asphalt has been used on the A90 in Scotland, with tests suggesting that the material will be more durable than thin surfacing produced under the standard UK specification, Clause 942 of the Specification for Highway works.
May 20, 2014 Read time: 3 mins
A stretch of the A90 in Scotland now has an innovative thin layer wearing course featuring PMB
A new Scottish specification for stone mastic asphalt could help with some of the durability issues sometimes experienced in the UK

An alternative specification for stone mastic asphalt has been used on the A90 in Scotland, with tests suggesting that the material will be more durable than thin surfacing produced under the standard UK specification, Clause 942 of the Specification for Highway works.

The Scottish specification, TS 2010 (soon to be renamed Clause 942TS), is much more prescriptive than the English system and specifies a polymer modified binder, a grading and binder envelope and an air void content of the finished product. It also specifies thickness requirements, the use of fibre, resistance to deformation and early life skid resistance as measured by a GRIP tester. Each quarry requires a separate approval for each mix type.

“Bearing in mind the higher binder contents specified and the void content required, this type of product must be more durable than a standard clause 942 material. I believe many failures of thin surfacing are directly attributable to high voids and low binders,” said Neil Anderson, technical director of Leiths Group which supplied and laid the material.

“Given that exactly the same plant and labour resources are used to manufacture and lay a clause 942 material compared with a TS 2010 material, the case for following the TS 2010 specification and producing a more durable material are compelling.”

The contract – for resurfacing the A90 trunk road near Aberdeen – called for a clause 942 thin surfacing using a polymer modified binder and 10mm aggregate laid 30mm thick along a 2.5km stretch of road. Aggregates had to have a minimum polished stone value of 55, a maximum AAV of 14 and a flakiness index of FI 20. Wheel tracking level 3 and road/tyre noise level 1 were specified along EME2 support layers for the surfacing, and a performance guarantee of five years.

“Two sections of the new construction required a higher PSV of 68 – however, higher PSV aggregates tend to be less durable than lower PSV mixes when used as thin surfacing,” said Anderson.
Leiths offered an alternative, a material that would meet all of the contract requirements Plus also meet TS 2010. “It was decided to proceed with two SMA mixes, a 10mm and a 6mm using local granite aggregates of PSV56, laid to a target thickness of 35mm,” Anderson says. For the polymer modified bitumen Leiths used 294 Nynas Nypol 103, a highly modified elastomeric binder which demonstrates substantial resistance to deformation and cracking.

To comply with TS2010, two stages of trials were required as part of the approval process, involving laboratory mix designs and production and laying trials. Deemed satisfactory, the material was laid on the A90 for a trunk road network trial.

Extensive tests of the laid material included taking nuclear density gauge readings every 20m in alternative wheel tracks to check in situ density compliance. Voids were found to comply with the specification. A GRIP test was carried out immediately the contract was completed and values greater than 0.7 (0.62 Scrim) were achieved. This was a greater skid resistance than required by the contract, and higher than the 0.55 Scrim level required for a Class 3 site.

On the A90 project, 6mm SMA was laid in the areas of the junctions where a greater degree of skidding resistance was required. A PSV test of the aggregate fraction used in this layer gave results of 73. The early life skid resistance values of the 6mm surfacing proved marginally higher than the 10mm surfacing made with the same aggregate type.

For more information on companies in this article

Related Content

  • Efficient road maintenance with Simex
    October 1, 2022

    Simex at Bauma Munich from 24 to 30 October, Hall C5, Booth 325.

    Bauma Munich – the most anticipated trade fair event in terms of strategic importance, turnout, new product launches and media impact for the earthmoving sector – has always been an opportunity for Simex to show to its partners and users its technical quality. The ability to innovate and do research, combining the new models in the range with new technological concepts, it’s the Simex way to outline the paths to be followed in the future.

  • Researchers trial 3D printing for both concrete and asphalt roads
    February 27, 2019
    Automated road repairs, using 3D printing, could save money and vastly reduce disruption, and researchers are already showing it’s possible - Kristina Smith reports It’s the middle of the night, and in the street below a team is busy carrying out repairs to the road surface. But there isn’t a human in sight. A road repair drone has landed at the site of a crack and a 3D asphalt printer is now busy filling in that crack. A group of traffic cone drones have positioned themselves around the repair location
  • Accuracy from Sandvik’s WX6500 screening media
    April 13, 2018
    NCC Industry in Södra Sandby, Sweden has been using Sandvik’s latest screening media technology, the WX6500, for over a year The company reports that the first fine screening test panels are still in place and performing reliably. NCC Industry's Stone Materials division said that it has long chosen rubber screening media over wire mesh. The choice is crucial in Södra Sandby, where abrasive quartzite produces excessive wear on metal components. Yet despite its preference, the company said that it had stru
  • Optimising paving processes with Topcon
    November 21, 2019
    The use of sophisticated machine control technology is integral to delivering high quality and productivity for concrete paving operations