Skip to main content

Beyond warm mix

A move to warm mix should be just one part of a much broader strategy to reduce the impact of road paving activities on climate change, says Nynas.
November 22, 2019 Read time: 3 mins
Even when using a more carbon-intensive PMB, a pavement that lasts 50% longer saves 25% in embodied Carbon. Source: Nynas]

Though reducing production temperatures is an important way to lower the industry’s carbon dioxide emissions, there is a far more obvious – and impactful - way of reducing a highway’s carbon footprint: building roads that last longer.

“The easiest environmental gain is for the contractor to use the right materials and do the right job,” said Nynas’ technical director bitumen, Carl Robertus.

Increasing a pavement’s life by one-third reduces its embodied carbon dioxide by 25%. Doubling its life leads to a halving in embodied carbon, according to Nynas. Even using polymer modified bitumen, which requires more carbon to produce than a standard one, delivers similar carbon savings (see graph).

 However, ensuring that the bitumen in a mix is right for the job is not as easy as it used to be.  The rheology of bitumen has changed over the last decade, so that although a bitumen may meet the parameters defined and measured by traditional, empirical tests, its long-term behaviour may not be as good as expected.

To try and better predict long-term performance, US researchers have developed new parameters ΔTc - or Delta Tc – and the Glover-Rowe parameter to help express long-term durability and cracking behaviour.  Though more widely used in the US, where ΔTc was first referenced in 2011, there is little wider awareness of these parameters in Europe, other than among researchers.

“Some of the major asphalt contractors are now picking up on it,” said Dennis Day, technical support manager for Nynas Bitumen in the UK. “On the client side, I suspect they are not aware of it. We need to raise awareness of the new rheological characterisation of bitumen which is the only way to ensure you have good quality bitumens.”

The composition of bitumen has changed as refining processes have been updated. Advanced refining technology means that more high-value products can be extracted from a barrel of crude oil, leaving different products at the bottom of the barrel which are often blended with other products to create a bitumen that meets the standard property tests.

“Most refineries focus on producing fuel, with bitumen being only being a fraction of the total throughput,” adds Robertus. “These refineries generally maximise their economy by being flexible on the crude oil used as refinery feed. Consequently, the bitumen produced comes from a range of different oils which contributes to variations in product quality.”

According to Robertus, Nynas as a specialist bitumen producer has a different approach: “Most of Nynas’ bitumen is produced by straight run vacuum distillation from a limited number of crude oils. This brings consistency in the quality of the product.”

Nynas would like to further the industry’s understanding of parameters such as ΔTc, by analysing existing pavements. “We would like to look at certain sites that have done particularly well, or particularly poorly to analyse what has happened. We would take a sample and extract the bitumen to see how it looks in terms of the Delta Tc and the rheology,” said Robertus.

This would help increase our understanding of how the qualities of bitumen contribute to pavement lives – and carbon reduction.

 

For more information on companies in this article

Related Content

  • Road repairs take to the air
    November 29, 2018
    Automated road repairs using 3D printing could save money and reduce disruption, reports Kristina Smith It’s the middle of the night and in the street below a team is busy carrying out repairs to the road surface. But there isn’t a human in sight. A road-repair drone has landed at the site of a crack and a 3D asphalt printer is now busy filling in that crack. A group of traffic cone drones have positioned themselves around the repair location to protect the repair drone and divert traffic around it.
  • Electro-fragmentation offers new recycling solution for fibre-reinforced concrete
    July 12, 2018
    A pan-European research project is investigating the use of electro-fragmentation to help recycle fibre-reinforced concrete (FRC). Increasingly used in civil applications such as tunnels and bridge decks, FRC can be challenging to recycle because of the difficulty in separating the tiny fibres from the concrete material. “Most of the research into FRC is about the formulation or the application of the material,” said Kathy Bru, a process engineer at research organisation BRGM. “We are looking ahead 20 or 3
  • Concrete innovation from research project
    November 11, 2019
    A new programme of research may deliver innovative technologies to help in the development of more complex concrete structures. This new research project is enabling state-of-the-art design through the use of finite element limit analysis for solid concrete structures. This is helping to deliver savings in terms of materials and time, with a major impact for cost reduction. Meanwhile structures can be built more readily and with fewer environmental issues. “With the current state of affairs, uncertainties
  • Sustainability-focused Marini
    July 10, 2023
    Marini, a Fayat Group company, has been busy explaining the significant sustainability gains of its asphalt plant solutions to customers and potential customers.