Skip to main content

Concrete innovation from research project

A new programme of research may deliver innovative technologies to help in the development of more complex concrete structures. This new research project is enabling state-of-the-art design through the use of finite element limit analysis for solid concrete structures. This is helping to deliver savings in terms of materials and time, with a major impact for cost reduction. Meanwhile structures can be built more readily and with fewer environmental issues. “With the current state of affairs, uncertainties
November 11, 2019 Read time: 3 mins

A new programme of research may deliver innovative technologies to help in the development of more complex concrete structures. This new research project is enabling state-of-the-art design through the use of finite element limit analysis for solid concrete structures. This is helping to deliver savings in terms of materials and time, with a major impact for cost reduction. Meanwhile structures can be built more readily and with fewer environmental issues.

“With the current state of affairs, uncertainties and disputes among engineers are often encountered in practice regarding the actual load bearing capacity of solid concrete structures and the actual amount of minimum reinforcement that is required to ensure sufficient ductility”, explained Linh Cao Hoang, Professor at the Technical University of Denmark (DTU) and Project Manager of the research project.  

"These uncertainties can have major societal and economic consequences and, at the same time, prevent better material utilisation in the design,” he continued.

This research is looking to develop a theoretical basis for computer-based rigid-plastic analysis and design of solid reinforced concrete structures. It will reveal a new understanding of the mechanical behaviour of reinforced concrete in the tri-axial stress states. It will also boost understanding of structural ductility and provide insight into the behaviour of solid 3D structures through full scale testing.

A key challenge to industry is the conservatism in the design methodology. There are also compromises between design time and material quantities that currently hinder designers. However, optimising the designs for large concrete structures could reduce the environmental impact from major infrastructure schemes. This is because cement has a massive carbon footprint and contributes to about 7 % of global CO2 emissions.

"With the outcome of the research project, we will potentially make it easier to optimise the design of solid reinforced concrete structures in the future, therefore minimising the quantities of materials needed, such as cement," said Jesper Asferg, vice president in 8721 COWI’s Bridges International department and part of the Steering Group for the research project.  

The three-year project is a collaboration between DTU Civil Engineering and COWI made possible by donations from the COWI Foundation, the Innovation Foundation, DTU and COWI.

Facts:

The project "Load bearing capacity of solid reinforced concrete structures - Rigid-plastic modelling and tests" is split into three work packages (WP) which include an Industrial PhD and a Post-Doctoral research project:

The research project has a number of targets. One is to develop a finite element limit analysis (FELA) framework for solid reinforced concrete structures. And another is to investigate through experimental and analytical verifications when and how rigid plastic calculations of solid reinforced concrete elements are valid and reliable.

COWI

%$Linker: 2 External <?xml version="1.0" encoding="utf-16"?><dictionary /> 0 0 0 link-external www.cowi.com/about/news-and-press/new-research-to-develop-more-sustainable-designs-of-large-concrete-structures false https://www.cowi.com/about/news-and-press/new-research-to-develop-more-sustainable-designs-of-large-concrete-structures false false%>

For more information on companies in this article

Related Content

  • MIT researchers focus on stronger cement, the natural way
    June 6, 2016
    Scientists at MIT - the Massachusetts Institute of Technology, in the United States - have reportedly developed a type of concrete that may be stronger and more durable than traditional cement. According to the MIT News, a paper recently published in the journal Construction and Building Materials, scientists compared cement paste with the structure of natural materials including bones, shells and sea sponges. These are exceptionally strong because of the way they are arranged at both the microscopic lev
  • ERF: LCE4ROADS for sustainability during road construction
    March 28, 2017
    LCE4ROADS is a new certificate assessing sustainability during road construction and rehabilitation Statistics have just been released showing that 2016 was the hottest year in history and reinforcing the concern that climate change is starting to have a real impact on our society. Adaptation to climate change is becoming an ever growing priority for the road infrastructure sector which is looking for new ways to conduct its construction and maintenance operations in a more environmentally friendly ma
  • Seismic Reinforcement Materials Market exceeding at 4% CAGR to cross $40bn by 2025
    July 10, 2019
    According to a new research report by Global Market Insights, Inc. Seismic Reinforcement Materials Market will surpass USD 40 billion by 2025. Increasing seismic activities across the globe resulting in loss of life and assets is the prime reason influencing the growth of seismic reinforcement materials market. The products are majorly used in buildings to strengthen the structures in order to minimize damage possibilities during or after earthquakes. Increasing awareness and implementation of various buil
  • NDT sensor fusion in structural pavement condition surveys
    February 27, 2017
    Early detection of pavement defects and the causes of deterioration is essential for effective maintenance planning, writes Dr Alena Uus* There is a need for optimisation and development of UK highway survey methods that would provide comprehensive information on the surface and subsurface pavement condition and operate at traffic speed, which eliminates the requirement for lane closures. Performance of non-destructive testing (NDT) methods commonly employed in pavement condition surveys can be potent