Skip to main content

VIDEO: Huesker explains “Interaction flexibility”

Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures. Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.
August 4, 2017 Read time: 3 mins

235 Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures.

Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.

The key properties of effective reinforcement are adequate tensile stiffness and tensile strength coupled with good interaction behaviour. The concept of interaction flexibility - the flexibility of the incorporated geogrid - has been shown to improve the interaction between soil and reinforcement.

The safety and longevity of reinforced earthworks are largely dictated by three factors. Firstly, the incorporated geogrid must exhibit adequate tensile strength. Insufficient strength may lead to failure of the reinforcement and, consequently, of the entire structure.

Secondly, the incorporated geogrid must exhibit adequate tensile stiffness – as one of the factors determining maximum structural deformation.

Thirdly, good interaction behaviour between soil and reinforcement plays a vital role in force transmission between geogrid and soil and is therefore key to structural safety and performance.

"Interaction behaviour" is a general term denoting the capacity of a geogrid – among other things, through interlock and friction – to take up and transfer forces from the soil. Yet, all previous conceptual frameworks have failed to give due attention to one particular aspect: the impact of the flexural stiffness of the geotextile product on interaction. By adding this key criterion, the term "interaction flexibility" expands the previous definition of interaction behaviour.

Interaction flexibility is the combined ability of a reinforcement product, firstly, to achieve a strong bond with the soil through optimisation of the (micro-, meso- and macro-) interlock properties and, secondly, to adapt flexibly to soil particles to prevent void formation.

The importance of this adaptability is described by C. Lackner in his PhD thesis (2012, Graz University of Technology): "The interaction between soil and reinforcement is even stronger where the geogrid can adapt to the soil particles and thus prevent the formation of voids within the soil structure. In other words, the installation of very rigid geogrids can produce negative interaction effects."

The flexibility of a geogrid is easy to characterise by means of an existing test method, defined in ASTM D7748. Accordingly, flexural stiffness, measured in the unit "mg-cm", should be as low as possible.

For more information on companies in this article

Related Content

  • Increasing demand for geosynthetics reinforcement
    May 3, 2012
    Geosynthetics have a wide variety of uses and these include providing extra strength in highway construction. Demand for geosynthetics in the United States alone is projected to increase 4.4% per year through to 2010 to more than 727 million m². Geosynthetics, used worldwide in the highway sector for strengthening, include geotextiles, geomembranes, geonets, geogrids, geosynthetic clay liners, preformed geocomposites, geocells and geofoams. The US advances will be fuelled by a recovery in nonbuilding constr
  • Increasing demand for geosynthetics reinforcement
    April 16, 2012
    Demand for geosynthetics in the United States alone is projected to increase 4.4% per year through to 2010 to more than 727 million m². Geosynthetics, used worldwide in the highway sector for strengthening, include geotextiles, geomembranes, geonets, geogrids, geosynthetic clay liners, preformed geocomposites, geocells and geofoams. The US advances will be fuelled by a recovery in nonbuilding construction. Additionally, geosynthetics will continue to increase their use in a wider range of applications
  • A flexible approach to concrete testing
    February 20, 2012
    One of the world's most versatile building materials is subject to a variety of tests to make sure it is fit for purpose. Patrick Smith reports
  • Geosynthetic solution for ground preparation
    May 3, 2012
    Naue Geosynthetics says its Secugrid offers a solution for a host of ground preparation problems, and for use in reinforced retaining walls. Secugrid is a geogrid made from extruded monolithic flat bars with welded junctions, for soil reinforcement in earth, landfill and road construction as well as in hydraulic engineering applications. Among its benefits are said to be its high strength and low elongation thanks to the extruded elements.