Skip to main content

VIDEO: Huesker explains “Interaction flexibility”

Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures. Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.
August 4, 2017 Read time: 3 mins

235 Huesker, an earthworks and foundation designer for roads and pavements, has posted a short video explaining “interaction flexibility”, a new term for geogrid-reinforced structures.

Interaction flexibility is an important technical term, as important as tensile strength and tensile stiffness, to secure the quality of a geogrid reinforced construction, explains the engineering team at Huesker which has its head office in Gescher, Germany.

The key properties of effective reinforcement are adequate tensile stiffness and tensile strength coupled with good interaction behaviour. The concept of interaction flexibility - the flexibility of the incorporated geogrid - has been shown to improve the interaction between soil and reinforcement.

The safety and longevity of reinforced earthworks are largely dictated by three factors. Firstly, the incorporated geogrid must exhibit adequate tensile strength. Insufficient strength may lead to failure of the reinforcement and, consequently, of the entire structure.

Secondly, the incorporated geogrid must exhibit adequate tensile stiffness – as one of the factors determining maximum structural deformation.

Thirdly, good interaction behaviour between soil and reinforcement plays a vital role in force transmission between geogrid and soil and is therefore key to structural safety and performance.

"Interaction behaviour" is a general term denoting the capacity of a geogrid – among other things, through interlock and friction – to take up and transfer forces from the soil. Yet, all previous conceptual frameworks have failed to give due attention to one particular aspect: the impact of the flexural stiffness of the geotextile product on interaction. By adding this key criterion, the term "interaction flexibility" expands the previous definition of interaction behaviour.

Interaction flexibility is the combined ability of a reinforcement product, firstly, to achieve a strong bond with the soil through optimisation of the (micro-, meso- and macro-) interlock properties and, secondly, to adapt flexibly to soil particles to prevent void formation.

The importance of this adaptability is described by C. Lackner in his PhD thesis (2012, Graz University of Technology): "The interaction between soil and reinforcement is even stronger where the geogrid can adapt to the soil particles and thus prevent the formation of voids within the soil structure. In other words, the installation of very rigid geogrids can produce negative interaction effects."

The flexibility of a geogrid is easy to characterise by means of an existing test method, defined in ASTM D7748. Accordingly, flexural stiffness, measured in the unit "mg-cm", should be as low as possible.

For more information on companies in this article

Related Content

  • Geosynthetic solution for ground preparation
    April 16, 2012
    Naue Geosynthetics says its Secugrid offers a solution for a host of ground preparation problems, and for use in reinforced retaining walls. Secugrid is a geogrid made from extruded monolithic flat bars with welded junctions, for soil reinforcement in earth, landfill and road construction as well as in hydraulic engineering applications. Among its benefits are said to be its high strength and low elongation thanks to the extruded elements. "The monolithic flat bars give it a robust construction, an
  • Huesker success in Milton Vargas Award
    December 14, 2012
    Huesker is celebrating victory in this year’s Milton Vargas Award. Now in its second year and honouring the pioneer of soil mechanics in Brazil who died in May 2011, the Milton Vargas Award is an initiative of the Brazilian magazine Fundações and Obras Geotécnicas. It recognises the work of professionals responsible for planning, design and implementation of large construction projects, whose works have already featured prominently in the magazine. Technical director Dr. Dimiter Alexiew (Huesker Germany); r
  • World growth in geosynthtics set to rise
    February 17, 2012
    With geosynthetics sales set to grow rapidly in the next three years, manufacturers are preparing for the demand. Patrick Smith reports. Global demand for geosynthetics is projected to increase 5.3% annually to 4.7 billion m² in 2013 with countries such as China, India and Russia expected to post the strongest gains through the forecast period. All are building large-scale infrastructure developments and face evolving environmental protection regulations and strict building construction codes.
  • Time, money and the environment – reducing the costs of a road project
    April 23, 2013
    Road construction has evolved considerably in recent years and today more options are available, offering greater longevity and durability, lowered costs, faster application and reduced impact on the environment. The fact that more options are available, however, means that more critical decisions must be made in order to ensure that the optimal solution is selected for the specific needs of each project. In this article we will look at some of the variables that should be considered, while examining the va