Skip to main content

REBLOC barriers for Rheinbrücke Leverkusen

Construction of the vehicle restraint system for the new Rheinbrücke A1 Leverkusen (bridge) in Germany was a challenge, according to REBLOC, maker of the system.
July 26, 2024 Read time: 3 mins
The bridge, part of the A1, and the access ramps are equipped with the REBLOC 100 SF(P) H4b/W4 system (image courtesy REBLOC)

The new Rheinbrücke A1 Leverkusen is part of a major traffic junction in Germany. The ambitious project includes the replacement of the Leverkusen Rheinbrücke as well as the expansion of the A1 motorway between Cologne-Niehl and the Leverkusen-West motorway junction.

At the same time, the bridge structures at the Leverkusen-West motorway junction are also being comprehensively renewed.

Replacement of the old Rheinbrücke consists of two individual, parallell-running bridge structures. The first part of the new construction was built directly north of the existing bridge.

Since February this year, traffic has been flowing over the new section. Before construction of the second bridge begins, the old Rheinbrücke will be demolished.

In the final state, both bridges together will provide eight continuous lanes - four in each direction. In addition, the entrances and exits on both sides of the Rhine River - both at the Leverkusen-West and the Cologne-Niehl junction – will lead onto and off the bridge with dual lanes. This will result in up to 12 lanes.

Moreover, 3.25m wide bicycle and pedestrian paths are planned for both sides, which are separated from the traffic lanes by noise barriers. The Rhine flows under the bridge as the main traffic artery for inland shipping. There is much to protect and the conditions are demanding.

Challenges and innovation

The entire construction project places high demands on the performance of the vehicle restraint systems - VRS. The bridge itself, with a steel cap as an orthotropic plate with a thin-layer coating as corrosion protection, requires a specially tailored VRS concept. Any type of anchorage into this steel cap leads to problems in construction execution as well as in the further operation and potentially necessary repairs.

However, the challenges go far beyond construction of the bridge. Large parts of the route lie directly in the sealing of a landfill, which places high demands on the VRS. In many areas, an anchorage into the ground is not allowed. At the same time, there is little space available for the effective range of the VRS

For the Rheinbrücke, the highest containment level H4b is required for the access ramps and parts of the landfill sealing. Therefore, the bridge itself and the access ramps are equipped with the REBLOC 100 SF(P) H4b/W4 system.

Meanwhile, the areas with the landfill drainage channels and noise barriers are also secured by this system. In areas, where minimal ground anchorage is allowed, the REBLOC 84XEAL H2/W1 system with an embedding depth of 40mm in asphalt, is used.

REBLOC precast concrete VRS

The chosen precast concrete VRS proves to be the ideal solution for the whole area. It secures the entire route continuously with tested and approved systems and transitions. The elements do not only offer visual appeal but also exceptional resistant to impacts - most minor accidents do not require any repairs.

An example of this is the conducted TB11 test - car weighing 900kg, traveling at 100km/h with a 20° impact angle. This did not cause any damage to the safety barrier. In addition, the unanchored H4b wall on the steel cap ensures the protection of the cap even when severely impacted.

As well, in case of a severe impact, damaged elements can be replaced quickly and easily at any time of the year independent of the weather.

The completion of the first new Rheinbrücke marks a milestone for the infrastructure in North Rhine-Westphalia. The new Rheinbrücke A1 Leverkusen will not only improve traffic flow but also strengthen the mobility and economy of the region sustainably. The upcoming progress of this impressive project remains exciting.

For more information on companies in this article

Related Content

  • Rebloc barriers are on the straight and narrow
    April 19, 2018
    Rebloc says that its barriers with narrow working widths and high containment levels provide the lowest dynamic deflection to ensure minimum movement during an accident. As only limited space is available on a construction site, a low working width of the barrier is crucial. The aim is to maximise the room for traffic movement at the same time as construction operations. The working width of temporary barriers is determined by the width of the system plus its dynamic lateral movement in the event of an ac
  • Advances in concrete paving materials
    July 9, 2012
    Innovations in materials technology, as well as machines, could provide a major boost to the concrete paving sector - Mike Woof reports Development of new material technologies for the concrete paving sector continues apace and the latest innovations could provide the biggest boost for this market in many years. High performance cementitious material (HPCM) is an innovative concept that has been developed and tested for road surfacing applications as part of a project in which the UK's Transport Research La
  • Innovations in concrete paving technology
    March 16, 2012
    Paving with concrete offers a strong and long life base for a roadway, with manufacturers continuing to develop technologies – Mike Woof reports. Innovation comes fast in the concrete paving market with a number of specialist suppliers offering an array of solutions to meet the needs of slipforming contractors. These machines can be used for a range of applications from large-scale airport runway or highway construction duties, tunnel jobs, bridge decks, barriers, traffic islands and kerbs. Because the app
  • Golden Gate Bridge gets Lindsay Transportation Solutions barrier
    March 10, 2015
    The iconic Golden Gate Bridge in California is now benefiting from the introduction of a new moveable barrier. Supplied by US specialist Lindsay Transportation Solutions, formerly Barrier Systems, and a division of Lindsay Corporation, this purpose-built moveable central divider will help maximise capacity while simultaneously boosting safety on the landmark structure. Constructed in the 1930s and first opened to traffic in 1937, the Golden Gate has coped extremely well with the years. Soundly engineered,