Skip to main content

Infrastructure monitoring data acquisition

The first prototype of an innovative new sensor device and its data acquisition system has now been developed. This move has come during the first 18 months of the 42-month Horizon 2020 SENSKIN (SENsing SKIN) project, a research partnership being implemented by 13 partners from 7 countries. A key objective of the SENSKIN project is the development of a skin-like sensor that offers spatial sensing and can monitor large strains, for use in monitoring-based maintenance of transport infrastructure. The syste
February 3, 2017 Read time: 3 mins
The first prototype of an innovative new sensor device and its data acquisition system has now been developed. This move has come during the first 18 months of the 42-month Horizon 2020 SENSKIN (SENsing SKIN) project, a research partnership being implemented by 13 partners from 7 countries. A key objective of the SENSKIN project is the development of a skin-like sensor that offers spatial sensing and can monitor large strains, for use in monitoring-based maintenance of transport infrastructure.

The system has been developed so that measurements from the sensors can be transmitted to the control centre even under difficult conditions, such as in the case of an earthquake, where some communication networks are inoperable. The sensor measurements provide input for structural assessment, while a dedicated module evaluates rehabilitation options. The whole system will be integrated to provide decision support on the timing and type of rehabilitation based on the identified damage, structural condition and available rehabilitation options. The system will be field evaluated in the Bosporus 1 bridge in Istanbul, which carries an average 200,000 vehicles/day, as well as on the Greek Egnatia Motorway that connects Europe to Asia.

The project commenced in June 2015. During the first 18 months of the project, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. It also provided proof of concept of the communication system, with the team now finishing the prototypes of the communication, structural and rehabilitation modules.

The sensors show a linear output in a range of strains between 0-20%, which is a major improvement over conventional sensors, as these fail at strains of no more than 2%. In addition, the new sensors can also monitor both strains and crack openings, replacing both strain gauges and crack meters. At the same time, this new sensor requires little power to operate, is capable of being installed on an irregular surface, is less expensive than existing sensors and allows simple signal processing - including the ability to self-monitor and self-report.

Structural assessment is based on detailed finite element analyses of the monitored bridge that have been developed, while the selection of rehabilitation methods takes into account economic and environmental considerations. The project has been co-funded by the EU and has been organised by the 1364 Forum of European National Highway Research Laboratories (FEHRL).

For more information on companies in this article

Related Content

  • New radio wave technology assesses asphalt integrity
    March 14, 2017
    Real time information on asphalt density and uniformity can boost construction quality - *Roger Roberts, GSSI. Properly compacted asphalt is a major factor in the lifespan of a road, as inadequately compacted asphalt deteriorates at a more rapid rate than properly compacted material. With the billions spent on road construction and repairs each year, it has become a matter of urgency to find new technologies that can ensure the integrity of asphalt on newly paved roads. New radio wave technology is now avai
  • River level monitoring to reduce scour risk
    July 11, 2022
    An OTT ecoLog 1000 water level logger with cellular data connection to Hydromet Cloud was trialled upon the Vales Burn Bridge in Scotland
  • Developing a road safety decision support system for policymakers
    April 22, 2016
    Limited public budgets means that policymakers today, more than ever, need to able to make decisions that are cost-effective and can bring about the highest return in terms of road safety gains Policymakers put great emphasis on making informed decisions to ensure that the policies decided upon are backed up by relevant studies and research. While there are hundreds or even thousands of relevant studies in the field of road safety, these are dispersed across different countries without any interconnection b
  • NDT sensor fusion in structural pavement condition surveys
    February 27, 2017
    Early detection of pavement defects and the causes of deterioration is essential for effective maintenance planning, writes Dr Alena Uus* There is a need for optimisation and development of UK highway survey methods that would provide comprehensive information on the surface and subsurface pavement condition and operate at traffic speed, which eliminates the requirement for lane closures. Performance of non-destructive testing (NDT) methods commonly employed in pavement condition surveys can be potent