Skip to main content

Infrastructure monitoring data acquisition

The first prototype of an innovative new sensor device and its data acquisition system has now been developed. This move has come during the first 18 months of the 42-month Horizon 2020 SENSKIN (SENsing SKIN) project, a research partnership being implemented by 13 partners from 7 countries. A key objective of the SENSKIN project is the development of a skin-like sensor that offers spatial sensing and can monitor large strains, for use in monitoring-based maintenance of transport infrastructure. The syste
February 3, 2017 Read time: 3 mins
The first prototype of an innovative new sensor device and its data acquisition system has now been developed. This move has come during the first 18 months of the 42-month Horizon 2020 SENSKIN (SENsing SKIN) project, a research partnership being implemented by 13 partners from 7 countries. A key objective of the SENSKIN project is the development of a skin-like sensor that offers spatial sensing and can monitor large strains, for use in monitoring-based maintenance of transport infrastructure.

The system has been developed so that measurements from the sensors can be transmitted to the control centre even under difficult conditions, such as in the case of an earthquake, where some communication networks are inoperable. The sensor measurements provide input for structural assessment, while a dedicated module evaluates rehabilitation options. The whole system will be integrated to provide decision support on the timing and type of rehabilitation based on the identified damage, structural condition and available rehabilitation options. The system will be field evaluated in the Bosporus 1 bridge in Istanbul, which carries an average 200,000 vehicles/day, as well as on the Greek Egnatia Motorway that connects Europe to Asia.

The project commenced in June 2015. During the first 18 months of the project, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. It also provided proof of concept of the communication system, with the team now finishing the prototypes of the communication, structural and rehabilitation modules.

The sensors show a linear output in a range of strains between 0-20%, which is a major improvement over conventional sensors, as these fail at strains of no more than 2%. In addition, the new sensors can also monitor both strains and crack openings, replacing both strain gauges and crack meters. At the same time, this new sensor requires little power to operate, is capable of being installed on an irregular surface, is less expensive than existing sensors and allows simple signal processing - including the ability to self-monitor and self-report.

Structural assessment is based on detailed finite element analyses of the monitored bridge that have been developed, while the selection of rehabilitation methods takes into account economic and environmental considerations. The project has been co-funded by the EU and has been organised by the 1364 Forum of European National Highway Research Laboratories (FEHRL).

For more information on companies in this article

Related Content

  • New methods allow concrete testing on the spot
    July 20, 2015
    This month we look at two new methods which are allowing concrete to be tested on the spot, and [over the page] we catch up on the latest news from concrete testing equipment suppliers - Kristina Smith writes Sometimes test results can be very bad news. If the concrete pavement or bridge abutment has already been poured, and if the concrete does not meet the specification, the outcome could be very expensive remedial work.
  • New Turkish bridge opens to traffic
    June 30, 2016
    Turkey’s new Osman Gazi Bridge has now opened for traffic. This bridge can carry 40,000 vehicles/day, while halving the travel time needed using previous routes. This is a six lane suspension bridge measuring 3km and spanning the Sea of Marmara. Construction has taken 42 months and the structure has been designed to cope with the risk of earthquakes. The project has been co-ordinated by Japanese construction company IHI, with Siemens handling the role of electro and mechanical contractor. Siemens has dev
  • Technology makes materials testing quicker and easier
    February 14, 2012
    Sophisticated technology is now being used to make the testing of a wide variety of materials quicker and easier as Patrick Smith reports. Ever since the CE mark became mandatory for asphalt mixes, it also became necessary and important to update the testing equipment and systems used for testing such materials.
  • New concrete testing technologies improve speed, safety and quality
    July 8, 2016
    Developments in data processing and management are revolutionising the way concrete strengths can be measured and used to improve efficiencies - Kristina Smith reports on two new technologies A new system that uses thermal imaging to measure the strength of sprayed concrete tunnel linings is being trialled for the first time in London. The brainchild of Dr Benoit Jones, managing director of Inbye Engineering, the technique could lead to improvements in safety, quality and – in the longer run – productivi