Skip to main content

Towards Sustainable highways, from its foundation

Geosynthetic materials are increasing its significance in many applications in the civil and underground engineering. One of such application is in foundation stabilization for roads. A life cycle assessment (LCA) study on behalf of the European Association for Geosynthetic Manufacturers (EAGM)1 has re-vealed that the use of geosynthetic materials will contribute for sustainable highways. In road construction the sub-base needs to meet defined requirements for compaction and bearing ca-pacity. Improveme
June 29, 2015 Read time: 3 mins
Figure 2. Environmental impacts of the life cycle of 1 m road with different foundations, cases 2A, 2B and 2C. For each indi-cator, the case with highest environmental impacts is scaled to 100°%.
Geosynthetic materials are increasing its significance in many applications in the civil and underground engineering. One of such application is in foundation stabilization for roads. A life cycle assessment (LCA) study on behalf of the European Association for Geosynthetic Manufacturers (EAGM)1 has re-vealed that the use of geosynthetic materials will contribute for sustainable highways.

In road construction the sub-base needs to meet defined requirements for compaction and bearing ca-pacity. Improvements of some soil characteristics may be necessary while building on weak soils. Geo-synthetics materials is one approach to support such weak soils.

Today, there are 3 types of different geosynthetics that can be used for stabilization. Those 3 types are, extruded stretched grids, layed grids, and woven / knitted grids. For the LCA study, the average of the three is used to represent its performance. Polypropylene granulates are used as basic material to manufac-ture geogrids or wovens used in the study.

The environmental friendliness of the use of geosynthetic materials were found by carrying out a cradle-to-grave LCA2 study with data from numerous participating EAGM member companies which compared 3 cases. Those cases are conventional road (2A), a road reinforced with geosynthetics (2B) and a ce-ment/lime stabilised road (2C). Besides the construction of a conventional road with a non-frost sensitive gravel/sand layer (case A), soil improvement can be done with geosynthetic (case B) or by adding lime, cement or hydraulic binder (case C). Both cases B and C lead to a reduced thickness of the gravel/sand layer. Figure 1 illustrates the cross section of the road profile of the roads for all three alternatives.

The considered road is class III with the same finished surface level in all cases with lifetime of 30 years. The road is built on frost-sensitive soil class F3. In regions where the frost penetration depth does not reach the frost-sensitive soil, this soil needs not being removed. This is considered the standard case 2B.
The environmental performance is assessed with the following impact category indicators:

• Cumulative Energy Demand (Primary Energy Consumption, split into non-renewable and renewa-ble fractions),
• Climate Change (Global Warming Potential, GWP100),
• Photochemical Ozone Formation,
• Particulate Formation,
• Acidification,
• Eutrophication,
• Land competition, and
• Water use.

In Figure 2 the environmental impacts over the full life cycle of a road in class III with a length of 1 meter, a width of 12 meters are shown.

Compared to a conventional road (case 2A), the use of geosynthetics leads to lower environmental im-pacts concerning all indicators investigated (case 2B). At least a layer of 25 cm of gravel in a conventional road must be replaced by geosynthetics used in road foundation in order to cause the same or lower envi-ronmental impacts regarding all indicators. The comparison between a road stabilised with geosynthetics (case 2B) and a road stabilised with cement/lime (case 2C) is less clear-cut. However, among the 8 envi-ronmental performance assessed, the use of geosynthetics materials (case 2B) turned out to be the best op-tion among the 3 cases. The fact illustrates the potential contribution of geosynthetic materials towards sustainable highways. For the details of the study, please refer to the document available on EAGM homepage3.

Related Content

  • LafargeHolcim delivers Algeria concrete road solution
    May 14, 2018
    In Algeria, LafargeHolcim has introduced roller compacted concrete (RCC) for the first time in the country to renovate the RN45 road, with reduced costs, construction time and increased durability - *Nicolas Miravalls. Heavy traffic on a road stretch in northern Algeria has resulted in the need for rebuilding of the link, making it better able to cope with demand. In Algeria’s Msila region, the RN 45 road carries over 700 heavy load trucks/day, 365 days/year and required a major re-construction. In 2017, La
  • Welsh contractor enlists a ‘road warrior’ for stabilisation work in England
    September 28, 2015
    Groundworks contractor DCM Roadways, based in the southeast Wales town of Monmouth, has brought in an FAE MTM to ensure the best result possible for an access road project. DCM, which specialises in soil stabilisation and road recycling, is working on a solar project in the Forest of Dean area of Gloucestershire county, just across the border in England. The job is for the construction of around 1.2km of stabilised highway access roads.
  • Nuphalt’s novel patching system offers fast and efficient road repairs
    September 2, 2014
    Fast, efficient and long-lasting repairs are claimed for the heating system developed by the Nu-Phalt Group Developed in the UK, the innovative Nu-Phalt pothole patching system equipment is now being widely used by various local authorities for road repairs. But this technology is also being employed internationally, with key sales in parts of Eastern Europe and India.
  • Advanced technologies will increase the wear life of bitumen further
    February 28, 2012
    Bitumen has been used for thousands of years, but now a wide variety of products are available that can be added to it to produce blends with improved properties. According to the Refined Bitumen Association (RBA) bitumen is the oldest known engineering material. Indeed, the organisation says that its versatility as a construction material is unparalleled, and having been used as an adhesive, sealant and waterproofing agent for over 8,000 years, its uses include the construction and maintenance of roads, ai