Skip to main content

Indeco cuts up New York City’s old Kosciuszko Bridge

An Indeco ISS 45/90 is proving essential for demolishing the old Kosciuszko Bridge in New York City. New York City’s old 1.9km Kosciuszko Bridge, which crosses Newtown Creek connecting Green Point, Brooklyn with Maspeth, Queens, has been out of service since April. By the end of the year, the polygonal Warren through-truss structure will be no more. To replace the old bridge, in 2009, the New York State Department of Transportation planned the construction of two cable-stayed replacement bridges.
November 23, 2017 Read time: 5 mins
Every span of the 1939 Kosciuszko Bride is coming down, bite by bite
An 237 Indeco ISS 45/90 is proving essential for demolishing the old Kosciuszko Bridge in New York City

New York City’s old 1.9km Kosciuszko Bridge, which crosses Newtown Creek connecting Green Point, Brooklyn with Maspeth, Queens, has been out of service since April. By the end of the year, the polygonal Warren through-truss structure will be no more.

To replace the old bridge, in 2009, the 1431 New York State Department of Transportation planned the construction of two cable-stayed replacement bridges.

The first of the two new bridges located south of the old truss bridge opened in April. After demolition of the old bridge, a new westbound cable-stayed bridge, including four lanes and a bike-walkway, will be built on the site of the old bridge.

Construction of the first new bridge was awarded to a joint venture made up of Skanska-Kiewit-ECCO III Enterprises, which finished building the first bridge last April. The JV is also in charge of demolishing the entire old bridge to allow construction of the second new bridge. Demolition officially started July 24 when the main 91m span was taken down.

Demolition of the main span consisted of a strand jacking system to lower the 2,270tonne structure – 27m wide and 15.2m high - down 38m and onto two barges on Newtown Creek. The barges were then tugged to the East River and from there to a recycling facility where the main span will be demolished.

To demolish the approaches of the 21 spans ranging from 36-70m and which were resting on reinforced concrete piers, it was decided to section the deck and weaken the main members. This included girders and stringers, by cutting in defined areas and then placing a small amount of charges in key points to collapse the structure onto a bed of dirt piled under the various spans. This would create a damping effect.

Once collapsed, the spans are to be cut and taken to a recycling plant. The remaining piers will be demolished using large hydraulic hammers.

It’s a Breeze


The demolition process was subcontracted to New York demolition business Breeze. The company decided to make minimal use of flame-cutting, confining it to areas only where a mechanical method could not be used. Instead, the company would employ shears – in this case a new ISS 45/90 from Indeco.

In September, demolition started with the initial span on the Queens side. This span, unlike the others which are later to be collapsed all at the same time by blasting, had to be taken down entirely by mechanical means.

Collapsing the first span using explosives could have induced structural stresses to the rest of the spans that were being prepared for blasting. Weakened by cuts and deck-sectioned, demolition of both approaches will involve cutting around 31,500tonnes of steel and demolishing and crushing around 68,000m³ of reinforced concrete that comprises the piers.

To get demolition done in the assigned 17 weeks, Breeze will use a fleet of machines and demolition attachments as well as other service equipment on site. The reason for such tight scheduling is because construction of the second bridge cannot begin if demolition of the old structure - first Queens side, then Brooklyn - is not complete.

Big job, big shears 


According to original drawings of the bridge, structural members are of either silicon steel or carbon steel with thickness up to just over 5cm. Some elements are particularly difficult to cut such as the top chord which is 34cm high and 54cm wide at the top and comprising plates with thickness of 32mm, 19mm, 16mm and 13mm.

The contractor Breeze is a long-time user of Indeco equipment, owning 22 hammers, two shears and two multi-grabs. For the old Kosciuszko Bridge job, the contractor bought an ISS 45/90, the largest of the manufacturer’s range available from Indeco dealer Alessi Equipment. Apart from brand loyalty, there were good technical reasons for the purchase. The ISS 45/90 is best in its weight class (9,700kg) in terms of clamping force (2,500tonnes). Maximum force at the tip is 275tonnes and the jaw opening is 1,100mm.

The ISS 45/90, like all other Indeco shears, also has a very favourable weight-to-power ratio. Structurally speaking, the attachment is made entirely of extra-strength Hardox . A heavy-duty pivot unit which provides long-term cutting efficiency, keeps the jaws aligned and prevents buckling. Alignment to prevent deflection in both directions during the cutting cycle - a critical point for every shear- is assured by a dual guide pack system that can infinitely adjust it.

In terms of power delivery, the ISS 45/90 relies on the oversized cylinder design that can withstand 700bar of pressure to handle any type of working condition. Power is also helped by double integrated regeneration valves, together with the exclusive cylinder design to speed up no-load opening and closing of the jaw. The result reduces cycle times.

To further enhance performance, the V-Ripper Razor Dual piercing design of both the upper and lower jaws improves cutting ability. The shears have full high-speed 360° hydraulic rotation for better positioning and optimal cutting in any situation. This feature proved immediately useful in cutting the intricate structure of the first span, which entailed the jaw’s position to be constantly rotated to reach and cut the steel element.

The attachment is coupled to a 2300 Komatsu PC 800 via an original Indeco special mounting bracket specifically adapted to fit the boom carrier.

For more information on companies in this article

Related Content

  • Meva’s Mammut 350 formwork makes the difference for Neckar viaduct
    April 19, 2018
    Formwork specialist Meva is helping replace the longest motorway bridge, the Neckar River viaduct in Germany’s south-west state Baden-Wuerttemberg Work on the 1.3km Neckar viaduct, part of the A6 motorway at Heilbronn, should be finished by 2022. It is part of the A6 expansion project between the Weinberger junction and Wiesloch/Rauenberg. The project is officially the new Neckar viaduct BAB 6 at Heilbronn. Federal Motorway 6, the A6, is also known as the BAB 6. The 477km motorway starts at the French b
  • Doka delivers cantilevering for super-slim piers at Lahntal Bridge
    October 21, 2016
    Doka’s formwork expertise is currently in demand during the construction of one of the busiest motorway viaducts in Germany. The 400m six-lane Lahntal Bridge in Limburg dates from the early 1960s. Every day about 100,000 vehicles cross the bridge that spans the valley of the River Lahn. But traffic loads have increased sharply, so a new bridge is being built sited just a few metres west of the old viaduct. The new Lahntal viaduct will measure a massive 43.5m in width, enabling eight lanes plus hard shoul
  • Atlas Copco’s cutting in site
    June 25, 2012
    Atlas Copco (AC) Construction & Mining has unveiled a new combi cutter, the CC 950, and two new bulk pulverisers. To enhance the appeal of the new products, AC has created a dedicated microsite to offer customers easy access to information about its entire silent demolition range. The CC 950 features a 360° hydraulic rotation device, said to enable attachments to be placed in position quickly and easily. With an operating weight of 920kg, the CC 950 can be fitted onto carriers between 9 and 16tonnes, and ex
  • Collaborative approach is delivering the Queensferry Crossing
    March 28, 2017
    The Queensferry Crossing forms the centrepiece of a major upgrade to the cross-Forth transport corridor in the east of Scotland. It will be the longest three-tower, cable-stayed bridge in the world and represents a Scottish Government capital investment of more than €1.5 billion. The 2.7km Queensferry Crossing is alongside the Forth Road Bridge and will carry the M90 motorway across the Firth of Forth between Lothian, at South Queensferry, and Fife, at North Queensferry. Each of the three towers are 207m