Skip to main content

Doka’s Voest Bridge bypass project

The Voest Bridge over the Danube River is part of the A7 Mühlkreis Autobahn through Linz, Austria, is 40 years. Two bypass bridges are being constructed alongside the existing cable-stayed bridge as part of the client ASFINAG’s strategy to boost traffic capacity - around 100,000 vehicles cross the old bridge each day.
February 10, 2020 Read time: 3 mins
The superstructure formwork of construction stage LZ35D is supported by the high-performance Staxo 100 load-bearing tower (photo Mike Wolf)

Traffic to and from Linz city centre will use the new bridges while motorists wishing to bypass Linz will cross over on the existing bridge.

Work started in January 2018. Building four oval piers in the middle of the surging Danube poses a technical and logistical challenge. Sheet pile boxes are used to create dry space for the concreting of the base upon which the piers will be built in two sections. These massive columns are around 15m tall, 4.5m wide and up to 19.7m long. The formwork comprises wooden boxes made of Top 50 elements, assembled by the Doka pre-assembly service.

Exceptionally strong connection lugs are installed to transfer longitudinal anchor loads. This eliminates the need for tie rods on the longitudinal side and through the curves.

The piers are concreted using two types of concrete to provide an outer area that is particularly resistant to the wear caused by the strong flow of the Danube River. Constructing the oval foreshore piers on land is a little easier. Special lugs are also used for the formwork there. The river piers and the oval foreshore piers all have a fine, regularly structured surface as the pier formwork features matrices and trapezoidal bars. Round piers support the numerous entry and exit ramps. Around 20 of these piers measuring 1.2m in diameter are made from RS steel column formwork in a special design. Pre-assembled wooden box formwork made of Top 50 large-area formwork is used for seven piers with a thickness of 2m.

Superstructure formwork with “mobility guarantee” for rapid construction progress (photo Mike Wolf)
Superstructure formwork with “mobility guarantee” for rapid construction progress (photo Mike Wolf)

On the Linz waterfront the existing superstructure on both carriageways is being widened by up to 9.5m over 350m. The shoring is provided by a combination of Dokamatic tables with the Staxo 100 load-bearing tower. Where the deck meets the widened support structure, the consortium is building a 165m-long retaining wall including a cantilever slab.

The Top 50 formwork elements are anchored without ground support. Traffic into the city will be separated from through traffic at the Urfahr junction, so various entry slip roads and exits have to be created. A large number of Staxo 100 load-bearing towers are to be used for the superstructure in construction section LZ35D. WS10 multipurpose waling will be mounted to this structure and fitted with H20 top formwork beams and the 3-SO formwork sheet.

The concrete for the 100m-long ramp structure is then poured in one step. The subsequent 250m-long curved passage , the LZ35C, will consist of eight sections with the base slab constructed in advance. The bottom formwork for the box girder cross-sections here sits on a Xervon falsework. Alu Framax Xlife framed formwork is used as the internal formwork for the sidewalls. Top 50 large-area formwork on Staxo 100 load-bearing tower is used for the outside of the sidewalls and the cantilevers.

Doka says that its site team uses special shifting trolleys on castors to enable fast and efficient manipulation of the Staxo units. The sidewalls and deck slab of the superstructure for sections LZ35A and LZ36A are also concreted in one pour along their 100m-length. The steel superstructures over the Danube will link directly to these sections once they are completed. In the coming months, construction sections LZ35B, LZ36B and LZ36C will be constructed as slab superstructures.

Completion of the bridges is set for mid-2020 with the highway upgrades and new-build to be finished in 2023.

For more information on companies in this article

Related Content

  • Atlas Copco attachments make short work of the A8 Blaubeurer Weg Bridge
    March 21, 2016
    A reinforced concrete bridge over the Autobahn 8 between Merklingen and Nellingen in southern Germany was demolished overnight due in no small part to the efficient, reliable performance of Atlas Copco hydraulic attachments. In addition to demolition grippers, breakers and pulverisers, the demolition team used the HM 2000 hydraulic magnet to demolish structures and sort demolition waste. There is now nothing to stop the widening of the A8 to six lanes or construction of the parallel high-speed Wendlingen
  • JCCBI says US$300m for demolishing Montreal’s old Champlain Bridge
    April 11, 2017
    Tearing down the old steel truss cantilever Champlain Bridge in Montreal could cost around US$300 million, according to preliminary estimates by a federal government agency. Also, until the nearby new Champlain Bridge is finished, it will cost US$93 million annually to maintain the old one, according to Jacques Cartier and Champlain Bridges Incorporated (JCCBI), the federal Canadian agency that oversees several major road infrastructure assets in the city. Dismantling will start in 2019 at the earliest and
  • I Lift NY crane places first girder on New York’s Tappan Zee Bridge
    June 25, 2015
    One of the world’s largest cranes has placed the first steel girder assembly for the approach span of the new NY Bridge, often called the Tappen Zee Bridge in New York. The barge-mounted I Lift NY super crane with its nearly 100m boom slowly picked up the 125m unit from its delivery barge and gently lowered it onto concrete pedestals in the Hudson River, near the Rockland County side of the bridge. The super crane will install even larger sections of the new bridge, some of which weigh around 907tonne
  • Industry AMS opts for safety in any direction
    January 25, 2017
    Italian company AMS explains how its crashworthy end terminals act like a crash cushion Industry AMS (Automation Manufacturing Services) has developed a crashworthy end terminal tested according to part 7 of the EN 1317 that is classified as a double-sided and bi-directional end terminal. Starting from the European version of the terminal, and based on the same architecture, AMS has designed the SMA (Safety Modular Absorber) as a reinforced end-terminal in order to be complaint with both the MASH and