Skip to main content

Precision narrows the gap between design software and GIS

Greater precision is helping blur the boundaries between GIS technology and design software While GIS map based technology has extended its range across an ever more universal spectrum of uses in the highways sector, it is increasingly showing weaknesses for engineering purposes. It is very often not accurate enough. This has not mattered previously because the GIS tool has been seen essentially as an automated version of paper based systems from the design department's point of view. Where engineers
March 20, 2012 Read time: 5 mins
RSS

Greater precision is helping blur the boundaries between GIS technology and design software

While GIS map based technology has extended its range across an ever more universal spectrum of uses in the highways sector, it is increasingly showing weaknesses for engineering purposes. It is very often not accurate enough.

This has not mattered previously because the GIS tool has been seen essentially as an automated version of paper based systems from the design department's point of view. Where engineers have needed location information they have been able to request it from planning, legal or data management departments, perhaps in written form or lately electronically.

The land registries, gazetteers, maintenance and other departments would do their job, using GIS-based tools, and the road engineer and designers for detailed work would do their jobs, using their own tools.

But this led to "silos" of information growing ever larger as the tools available for planning and mapping types of work have grown more wide ranging. The amounts of data stored have escalated and the possibilities for new applications have grown.

"In some ways it is an artificial divide created by the vendors of various systems," said Carey Mann at 4019 Bentley Systems, one of the major players in the engineering drawing and civil engineering software field.

But this comes about because users start from different positions according to Mann. GIS systems are concerned with storing data and information and moving this from one area to another. In some ways this is similar to database management. Crucially, GIS systems are concerned too with indicating the relationships between data, in spatial terms. There are a multitude of uses and it is a powerfully intuitive way of manipulating and connecting data.

"But the engineer is concerned with a much more accurate physical record and that is not always what you get in GIS," said Mann. It is critical for example that a building's footprint is accurately fixed spatially. However the representational systems used in traditional GIS may not allow for that level of accuracy.

Even so engineers need to have access to information available in the host of the other departments, whether to relate designs to land zoning categories, find ownership and legal information about properties where projects will go, maintenance details or utilities data. These also use map type information as the basis for design work, the first layer on which a project is built up into precise detail, said Mann.

"But they also need to store information that they generate themselves which has GIS uses," he said. All kinds of details from an engineer's design will be required both by the engineer later on re-visiting the project, for upgrading or maintenance, and by those who come afterwards for those tasks.

"There is a view taken by Bentley that the software should support the project life cycle for construction and operation and management so that the information can be provided for supporting other disciplines over time," Mann said.

Cutting across the separation is important therefore. Bentley has developed a number of tools in the GIS field and will offer more in its new version of its CAD system Microstation when it is released in the autumn with, "core map technology available as part of Microstation," according to Mann. Map editing, publishing and data integration are being brought together, offering functionality previously only available as an extension.

The development of tools allowing direct links between the precision of CAD drawing and the information in GIS systems is also a major preoccupation of 685 Autodesk, maker of 3282 AutoCAD and the now well established Civil 3D package, now re-christened AutoCAD Civil 3D.

Part of Civil 3D, though also available separately is AutoDesk's AutoCAD Map 3D, which the company says is the bridge between AutoCAD and its precision engineering drawing and other tools and mapping, so that that CAD tools are available for mapping work.

The latest 2008 version offers access to a range of data formats that previously had to be imported, a process with large files that could take several minutes. Now raster files, a host of GIS formats and data from various database types can be brought together more quickly.

The technology used for this is the FDO or feature data object, an interface that translates the information in particular file formats into a universally accessible form (the technology is open source). The publishing software allows CAD created maps to be put straight onto the web and is a part of the Map 3D product.

Open sourcing has allowed a host of developers to work on the FDOs which now allow for more file formats to be used.

"Some 50-60 extra formats can be used," said Autodesk geospatial applications engineer Lynda Stoner.

There are some third party developers offering modules for Map 3D which allow for as many as 150 formats according to Stoner.

A second advantage to using the direct connection FDO technology is that data is unaffected by its connection. Translation to DWG format by the previous import mechanism is time consuming and could also create difficulties in maintaining data integrity.

AutoCAD Map gives engineering drawing a geophysical reference to accurately relate it to a particular coordinate system
RSS

For more information on companies in this article

Related Content

  • Know what lies below with Leica’s DSX 3D utility detection system
    April 11, 2025

    Emergency road repair work needn’t create yet another emergency by hitting unknow utility pipes and other systems.  

    Leica Geosystems says its DSX utility detection solution can quickly be walked over the area where work is about to start and immediately show an excavator operator any dangers that lie below.

    It locates, visualises and map utilities. Unlike any other ground penetrating radar system, the Leica DSX maximises productivity with cutting-edge software that automates data analysis and creates a 3D utility map of the field.

  • Straight to the point for measurement
    February 6, 2018
    Leica Geosystems says it is introducing a major advance in site surveying. This offers a novel tilt compensation system, so that users are no longer required to hold the pole vertical. The new Leica GS18 T is claimed to be the world’s fastest GNSS RTK rover, while the firm is also offering the latest versions of Leica Captivate field software and Leica Infinity office software. With the addition of calibration-free GNSS and various upgrades to the Captivate field software and Infinity office software, use
  • In control - with machine control technology
    June 21, 2016
    Advances with machine control technologies are providing major benefits right across the construction sector - Mike Woof writes With the massive bauma 2016 exhibition now having run its course, the construction sector look set to benefit from a range of new machine control technologies. These systems are being offered across a range of different segments in the equipment sector. Bulldozing was one of the first portions of the earthmoving segment to benefit from machine control systems, but a vast array o
  • Developments in bridge monitoring technology
    July 9, 2012
    Advances in bridge monitoring technology should help ensure structural safety Highly productive, Fugro Aperio's ground penetrating radar system offers accurate scanning of bridge condition Bridge engineers can now benefit from a new technology designed to pinpoint shallow targets, such as masonry fixings, reinforcement bars or delamination between thin layers. This uses the latest high resolution ground penetrating radar (GPR) antenna and has been developed by Cambridge-based Fugro Aperio in the UK. Operati