Skip to main content

Dutch road widening benefits from 3D software

Modern software is stretching traditional design boundaries on a motorway widening in the Netherlands, reports Adrian Greeman There was a time when civil engineering and aesthetics did not mix too well, especially on roads. The artistic ideas of an architect did not blend with the stringent requirements of structure. But modern three-dimensional modelling software is helping this change. Design notions that might have been overly complicated in the past are now attainable with hi-tech analysis tools.
February 24, 2012 Read time: 7 mins
RSS

Modern software is stretching traditional design boundaries on a motorway widening in the Netherlands, reports Adrian Greeman

There was a time when civil engineering and aesthetics did not mix too well, especially on roads. The artistic ideas of an architect did not blend with the stringent requirements of structure. But modern three-dimensional modelling software is helping this change. Design notions that might have been overly complicated in the past are now attainable with hi-tech analysis tools.

But this sophisticated technology is not limited to use with larger bridges and structures. Even basic bridges and viaducts can be designed in a new way with tools like 685 Autodesk's Civil-3D, because of the three-dimensional model at its core.

For Dutch contractor Heijms it is an ideal tool to draw together disparate data on several major road projects it is handling at present and to work up its detailed designs. "And the 2009 software is greatly enhanced in capacity over previous versions," said Johan Bolhuis, project design engineer on one of the larger schemes.

This is a €75 million widening project on the A2 motorway between Netherlands capital Amsterdam, the port city of Rotterdam and on to Antwerp in Belgium. Heijms is carrying out the expansion of an 11.7km section of the road between Culemborg and Deil, changing it from dual two lane to dual four lane capacity, with room in the future in a 70m corridor for a fifth lane if necessary. Some 11 structures must be widened or replaced as part of the work, as well as new embankment and road surface.
As with most public road schemes in the Netherlands this was let as a design-build, requiring the contractor to develop a design from a supplied road alignment and other information.

"To begin with we can use Civil 3D to draw together the various bits of information from other programs and work out how they sit together. The road alignment for example is supplied as a 4019 Bentley Systems MX file," said Bolhuis.

"The first thing we do is model the existing situation with a terrain model and the alignment in the supplied MX file. We can then fit the 3282 AutoCAD designed structures exactly around the road which we could not do before." AutoCAD is part of the basic tool kit included in Civil 3D anyway.

"In fact lately we have moved to Revit, the structural design program for the bridge design work, because it is an intelligent design program, where the objects in it 'know' what they are and alter elements around them to fit. Changes are instantly updated and cascaded through the rest of the design." Autodesk also supplies Revit.

With a Civil 3D model cross section drawings can be taken out at any point required and at any angle, he says. "Clash detection is also very much improved allowing us to spot difficulties long before we are on site."

The program has proved particularly useful because of the architectural forms for two of the major overbridges. The client, the Rijkswaterstaat road and water ministry, has long used architecture in its road projects, not least because the densely populated country has greater need than most to blend urban, rural, and transport space into one whole.

But architects' designs have been growing more complicated. In this scheme it aims at "the grace of a ballet dancer and the swooping motion of a dolphin". 
On two bridges above a river and over a railway line, this has resulted in unusual swirling curved forms for the pier supports. Rather than straight columns there are vertical spirals set at a slight angle to each other in a V shape.
The concrete spiral loops from one angled side to the other and back as it traverses the width
of the road.
The geometry, and the reinforcement inside, is extremely challenging and could only have been done with a 3D model according to Bolhuis. To complicate matters one of the bridges is being set alongside an existing steel bowstring viaduct which will continue to carry one side of the widened motorway.

"That meant very constrained headroom and difficult construction sequences," he said.

There was a time when civil engineering and aesthetics did not mix too well, especially on roads. The artistic ideas of an architect did not blend with the stringent requirements of structure. But modern three-dimensional modelling software is helping this change. Design notions that might have been overly complicated in the past are now attainable with hi-tech analysis tools.
But this sophisticated technology is not limited to use with larger bridges and structures. Even basic bridges and viaducts can be designed in a new way with tools like Autodesk's Civils-3D, because of the three-dimensional model at its core.

For Dutch contractor Heijms it is an ideal tool to draw together disparate data on several major road projects it is handling at present and to work up its detailed designs. "And the 2009 software is greatly enhanced in capacity over previous versions," said Johan Bolhuis, project design engineer on one of the larger schemes.

This is a €75 million widening project on the A2 motorway between Netherlands capital Amsterdam, the port city of Rotterdam and on to Antwerp in Belgium. Heijms is carrying out the expansion of an 11.7km section of the road between Culemborg and Deil, changing it from dual two lane to dual four lane capacity, with room in the future in a 70m corridor for a fifth lane if necessary. Some 11 structures must be widened or replaced as part of the work, as well as new embankment and road surface.
As with most public road schemes in the Netherlands this was let as a design-build, requiring the contractor to develop a design from a supplied road alignment and other information.

"To begin with we can use Civil 3D to draw together the various bits of information from other programs and work out how they sit together. The road alignment for example is supplied as a Bentley MX file," said Bolhuis.

"The first thing we do is model the existing situation with a terrain model and the alignment in the supplied MX file. We can then fit the AutoCAD designed structures exactly around the road which we could not do before." AutoCAD is part of the basic tool kit included in Civil 3D anyway.

"In fact lately we have moved to Revit, the structural design program for the bridge design work, because it is an intelligent design program, where the objects in it 'know' what they are and alter elements around them to fit. Changes are instantly updated and cascaded through the rest of the design." Autodesk also supplies Revit.

With a Civil 3D model cross section drawings can be taken out at any point required and at any angle, he says. "Clash detection is also very much improved allowing us to spot difficulties long before we are on site."

The program has proved particularly useful because of the architectural forms for two of the major overbridges. The client, the Rijkswaterstaat road and water ministry, has long used architecture in its road projects, not least because the densely populated country has greater need than most to blend urban, rural, and transport space into one whole.

But architects' designs have been growing more complicated. In this scheme it aims at "the grace of a ballet dancer and the swooping motion of a dolphin". 

On two bridges above a river and over a railway line, this has resulted in unusual swirling curved forms for the pier supports. Rather than straight columns there are vertical spirals set at a slight angle to each other in a V shape.

The concrete spiral loops from one angled side to the other and back as it traverses the width
of the road.

The geometry, and the reinforcement inside, is extremely challenging and could only have been done with a 3D model according to Bolhuis. To complicate matters one of the bridges is being set alongside an existing steel bowstring viaduct which will continue to carry one side of the widened motorway.

"That meant very constrained headroom and difficult construction sequences," he said.

RSS

For more information on companies in this article

Related Content

  • Smart constructioon with GIS, GPS design technology
    February 16, 2012
    A UK highway project has benefited from the latest software, GIS and GPS technology, Mike Woof reports. Sophisticated software, GIS and GPS technology has played an important role in a large highway upgrade project in the UK and helping to increase efficiency and drive down construction costs.
  • An array of innovative software and GIS solutions will boost construction efficiency
    July 18, 2012
    New software and GIS innovations will help boost construction efficiency - Mike Woof reports Major software suppliers continue to develop their technology and offer new products to the market. Major developments from leading firms will help improve operations for contractors in many segments of the construction industry, from initial design and planning through to maintenance. Version 8 of the well-known ARCADY program for assessment of roundabout capacity is just released by UK transport research and soft
  • Data collection key to software developments
    February 13, 2012
    The collection and handling of data are key technology drivers in the software sector. New methods of data collection and manipulation are driving significant developments in software at present. The latest technology allows designers and engineers to collect, store and manipulate ever larger amounts of data. Growing use of mobile field equipment for both data collection and field management is driving interactive systems. And in an interview this month Autodesk senior vice-president for the construction an
  • Optimising operations with construction software gains
    May 20, 2015
    Innovations in construction software are helping boost project efficiency and optimising project operations – Clive Davidson writes Over the past decade, while construction engineers have been putting up buildings or infrastructure, software engineers have been developing a parallel universe where virtual buildings or infrastructure can be created in ever increasing detail. What started with 2D architectural drawings in computer-aided design (CAD) systems, has become a multi-dimensional world, with 3D ge