Skip to main content

Tubeshor shoring system

By David Arminas December 10, 2024 Read time: 2 mins
The Tubeshor ATC contains a 450-tonne hydraulic cylinder coupled to a bladder accumulator which is pressurised to suit the individual prop design geo-load before dispatch

Altrad RMD Kwikform has launched a solution to reduce the effects of thermal loading - the Tubeshor Active Thermal Compensator, ATC.

The Tubeshor hybrid hydraulic shoring system is used for propping waler beams or capping beams of large excavations. Altrad RMD Kwikform, an above and below ground temporary works specialist, said it comes in a range of diameters to cater for all duties of shoring requirement.

An evolution of Tubeshor, the ATC Tubeshor accessory can reduce thermal loading by up to 90 percent compared to a mechanically locked-off prop, explained Ian Fryer, global product innovation director at Altrad RMD Kwikform.

Prop installation and pre-loading on site is carried out in the same way as for any standard proprietary prop; no special skills required. As Tubeshor ATC units are assembled directly into the prop makeup, standard prop end-fittings such as swivel units and spherical bearers can be used. Props can be installed into the excavation in the usual manner.

The Tubeshor ATC contains a 450-tonne hydraulic cylinder coupled to a bladder accumulator which is pressurised to suit the individual prop design geo-load before dispatch. Most of the time, the pressure in the accumulator exceeds that in the hydraulic system and normal prop stiffness results.

When higher temperature forces excessive prop thermal expansion, the compressed nitrogen in the accumulator comes into play and results in a phase of reduced prop stiffness. This means that a further increase in prop length resulting from thermal expansion does not result in the usual increase in prop load.

With less space taken up within the excavation, savings can be made on equipment, labour, transport and plant cost, as smaller plant can be used to install and remove the equipment.

Loads imposed on the permanent wall from the temporary props are reduced. This enables a lower cost wall design using less material and potentially reduces the volume of excavated soil, reducing project cost and further decreasing the carbon footprint.

The prop load can be read by direct inspection on site. There is also an option to use e-pins and wireless nodes to provide continuous prop load monitoring and data logging via a smartphone, tablet or laptop.
 

For more information on companies in this article

Related Content

  • Manufacturers push hybrid driveline technology
    March 11, 2014
    Driveline technology continues to develop rapidly, with many manufacturers at this year’s Conexpo exhibition showing Tier 4 Final emissions solutions, along with a host of fuel saving transmissions and hydraulic systems, all aiming to reduce operating costs for the customer. However, while there was certainly a hybrid presence at the show, things haven’t perhaps moved forward as fast as many had expected.
  • Manufacturers push hybrid driveline technology
    April 22, 2014
    Driveline technology continues to develop rapidly, with many manufacturers at this year’s Conexpo exhibition showing Tier 4 Final emissions solutions, along with a host of fuel saving transmissions and hydraulic systems, all aiming to reduce operating costs for the customer. However, while there was certainly a hybrid presence at the show, things haven’t perhaps moved forward as fast as many had expected.
  • Engine innovations unveiled
    August 24, 2023
    The recent CONEXPO-CON/Agg exhibition in Las Vegas saw major engine firms unveiling innovative new technologies
  • An array of crushing and screening innovations was presented at the recent INTERMAT 2012 exhibition
    July 19, 2012
    The crushing and screening phase is a crucial component in aggregate production and new development will help optimise performance - Mike Woof reports Crushing and screening is a key part of the quarrying cycle and has a huge impact on overall operating performance. Optimising operations will cut running costs, reduce materials wastage and also provide a more consistent product quality, boosting cost-effectiveness dramatically. An array of innovations were revealed to the market at the recent INTERMAT 2012