Skip to main content

Tubeshor shoring system

By David Arminas December 10, 2024 Read time: 2 mins
The Tubeshor ATC contains a 450-tonne hydraulic cylinder coupled to a bladder accumulator which is pressurised to suit the individual prop design geo-load before dispatch

Altrad RMD Kwikform has launched a solution to reduce the effects of thermal loading - the Tubeshor Active Thermal Compensator, ATC.

The Tubeshor hybrid hydraulic shoring system is used for propping waler beams or capping beams of large excavations. Altrad RMD Kwikform, an above and below ground temporary works specialist, said it comes in a range of diameters to cater for all duties of shoring requirement.

An evolution of Tubeshor, the ATC Tubeshor accessory can reduce thermal loading by up to 90 percent compared to a mechanically locked-off prop, explained Ian Fryer, global product innovation director at Altrad RMD Kwikform.

Prop installation and pre-loading on site is carried out in the same way as for any standard proprietary prop; no special skills required. As Tubeshor ATC units are assembled directly into the prop makeup, standard prop end-fittings such as swivel units and spherical bearers can be used. Props can be installed into the excavation in the usual manner.

The Tubeshor ATC contains a 450-tonne hydraulic cylinder coupled to a bladder accumulator which is pressurised to suit the individual prop design geo-load before dispatch. Most of the time, the pressure in the accumulator exceeds that in the hydraulic system and normal prop stiffness results.

When higher temperature forces excessive prop thermal expansion, the compressed nitrogen in the accumulator comes into play and results in a phase of reduced prop stiffness. This means that a further increase in prop length resulting from thermal expansion does not result in the usual increase in prop load.

With less space taken up within the excavation, savings can be made on equipment, labour, transport and plant cost, as smaller plant can be used to install and remove the equipment.

Loads imposed on the permanent wall from the temporary props are reduced. This enables a lower cost wall design using less material and potentially reduces the volume of excavated soil, reducing project cost and further decreasing the carbon footprint.

The prop load can be read by direct inspection on site. There is also an option to use e-pins and wireless nodes to provide continuous prop load monitoring and data logging via a smartphone, tablet or laptop.
 

For more information on companies in this article

Related Content

  • Processing technologies
    February 27, 2012
    Ontario-based WS Tyler is offering three innovative new systems to the North American market. The company is a subsidiary of German firm Haver and one of its new concepts is the new Haver Pelletising Disc, which converts fines into marketable pelletised product.
  • What’s new and what’s next in sustainable asphalt production
    May 10, 2021
    Maximising sustainability is a key driver in asphalt production as Dr Hans-Friedrich Peters at Ammann believes
  • Big excavators go ‘e’
    September 28, 2023
    These days, even those beasts of the construction site – excavators – have a date with sustainability, despite the huge amount of electric power needed to operate a machine that pushes about high loads of dirt.
  • Materials testing developments include a new in-depth training service
    April 4, 2014
    Among the new developments in materials testing highlighted this month is a brand new idea from one manufacturer: in-depth training to help upskill technicians in developing countries - Kristina Smith reports CONTROLS has added another dimension to its business with the launch of a specialist training service: CONTROLS Academy Centre. In what the construction testing equipment manufacturer believes is a first for the industry, CONTROLS will be providing in-depth theoretical and practical training to thos