Skip to main content

Protecting concrete structures to boost working life

A new startup business with its origins in a Purdue University innovation could help extend the lifetime of concrete structures. Paul Imbrock, founder and president of Environmental Concrete Products, said the company's Fluid iSoylator product can be used to protect new and existing concrete. He said hardened concrete sustains damage when fluids on the surface are absorbed into its network of pores, similar to those in a sponge. "When the fluid, which could be water that contains salts or other ions,
January 4, 2016 Read time: 3 mins
A new startup business with its origins in a Purdue University innovation could help extend the lifetime of concrete structures.

Paul Imbrock, founder and president of Environmental Concrete Products, said the company's Fluid iSoylator product can be used to protect new and existing concrete. He said hardened concrete sustains damage when fluids on the surface are absorbed into its network of pores, similar to those in a sponge.

"When the fluid, which could be water that contains salts or other ions, saturates the pore network, it will expand inside the concrete and initiate damage upon freezing," he said. "If the fluids evaporate instead, the ions remain and crystallise in the pores, which also creates damage. New fractures caused by either method of damage allow for even more ingress of fluids, which repeats the cycle and creates further damage that will destroy the concrete over time."

Purdue researchers have developed a hydrophobic sealant that could prevent potentially damaging fluids from entering concrete pores. The technology was licensed to Environmental Concrete Products through the Purdue Research Foundation Office of Technology Commercialisation.

"Our product is absorbed into dry concrete's pore network to create a hydrophobic barrier that prevents potentially damaging fluids from entering," Imbrock said. "Along with protecting concrete from the elements, Fluid iSoylator is derived from soybean oil and is safe to handle and apply. Its physical properties also make it possible to be adapted for other potential uses, including a combination paint-and-sealing product."

Imbrock said traditional concrete sealants on the market create a film on the surface of concrete through a chemical reaction between components mixed together or with oxygen.

"Although this approach works well in ideal conditions, the film might be damaged by traffic or other abrasions. It becomes counterproductive, then, because fluids can enter the area where the film is damaged, but the film also prevents them from evaporating, leaving them susceptible to freezing," he said. "Fluid iSoylator is different because when it enters the concrete's pores, it remains fluid regardless of traffic or abrasions. The pores are filled with the material, which prevents other fluid from entering." Imbrock said Environmental Concrete Products has launched the Fluid iSoylator product, developed relationships with investors and contracted a partnership with an Indiana-based soy biofuel producer that has provided the company with the means to manufacture the product.

Related Content

  • ERIC 2016: What shape the ‘Smart Road’?
    February 7, 2017
    Optimism about the future of highways worldwide abounded at the inaugural European Road Infrastructure Conference (ERIC) in Leeds, UK Around 500 delegates passed through the varied sessions during the three-day event at the Royal Armouries Museum in the northern English city of Leeds. They came away with many visions of what a motorway and road could look like. But what speakers at the event - co-organised by the Brussels-based European Union Road Federation (ERF) and the UK’s Road Safety Markings Ass
  • Concrete innovation from research project
    November 11, 2019
    A new programme of research may deliver innovative technologies to help in the development of more complex concrete structures. This new research project is enabling state-of-the-art design through the use of finite element limit analysis for solid concrete structures. This is helping to deliver savings in terms of materials and time, with a major impact for cost reduction. Meanwhile structures can be built more readily and with fewer environmental issues. “With the current state of affairs, uncertainties
  • Morgan’s FireMaster FireBarrier 135 boosts tunnel protection
    January 6, 2015
    Morgan Advanced Materials says its new FireMaster FireBarrier 135 sprayed refractory cement offers superior fire protection and simple, cost-effective installation. The 135 is ideal for concrete tunnel lining and ventilation shafts, escape tunnels and refuges as well as critical systems such as water mains and communication cables.
  • Advances in concrete paving materials
    July 9, 2012
    Innovations in materials technology, as well as machines, could provide a major boost to the concrete paving sector - Mike Woof reports Development of new material technologies for the concrete paving sector continues apace and the latest innovations could provide the biggest boost for this market in many years. High performance cementitious material (HPCM) is an innovative concept that has been developed and tested for road surfacing applications as part of a project in which the UK's Transport Research La