Skip to main content

Electro-fragmentation offers new recycling solution for fibre-reinforced concrete

A pan-European research project is investigating the use of electro-fragmentation to help recycle fibre-reinforced concrete (FRC). Increasingly used in civil applications such as tunnels and bridge decks, FRC can be challenging to recycle because of the difficulty in separating the tiny fibres from the concrete material. “Most of the research into FRC is about the formulation or the application of the material,” said Kathy Bru, a process engineer at research organisation BRGM. “We are looking ahead 20 or 3
July 12, 2018 Read time: 2 mins
A pan-European research project is investigating the use of electro-fragmentation to help recycle fibre-reinforced concrete (FRC).


Increasingly used in civil applications such as tunnels and bridge decks, FRC can be challenging to recycle because of the difficulty in separating the tiny fibres from the concrete material. “Most of the research into FRC is about the formulation or the application of the material,” said Kathy Bru, a process engineer at research organisation 8761 BRGM. “We are looking ahead 20 or 30 years to the end-of-life so that we can recycle and reuse again.”

The project is part of a bigger European research programme called HISER led by Spanish company 1582 Tecnalia, a research-to-market product consultancy. It aims to find better ways to cope with the 461 million tonnes of construction and demolition waste, excluding excavated material, produced every year in the 1116 European Union.

As well as looking for new recycling techniques to improve the value of waste materials,

some of the 25 partners are examining how specification can be changed to include more recycled materials in new construction projects.

Electro-fragmentation is a process that applies a high-voltage electrical charge into the material. It creates a shock, akin to a lightning strike or a demolition blast. The shock is concentrated at the interface between the different materials, which separates them out. The process was developed for mineral processing.

To date, the project has tested a small sample in the laboratories of 3180 Lafarge. The results reportedly look promising, with the possibility of reusing both fibres and concrete elements. Researchers are now working on FRC originating from the demolition of an experimental FRC bridge.

The next steps will be to evaluate the cost, in terms of cash and carbon, said Bru: “It’s also very important to consider the economic and environmental impact of new technology to ensure that what we think are good ideas are also good from an economic and environmental perspective.”

For more information on companies in this article

Related Content

  • A breakthrough in the horizontal reuse of PA (porous asphalt)
    May 12, 2016
    An ambitious objective has led to significant steps in the reuse of PA (porous asphalt). While the market incidentally produces PA with a maximum of 30% of recovered raw materials, BAM has introduced its own innovations, enabling more than 90% of raw materials to be reused. And this year, subsidies from the European Commission will enable the LE2AP demonstration project to be constructed: one kilometre of sustainable PA. Large-scale production is also being developed.
  • Ammann is helping boost RAP use in China
    December 19, 2017
    The use of a new Ammann plant is helping to improve RAP usage in China with the manufacturer and the Chinese Government working together to gather and evaluate production data. A key Ammann customer in China is helping pave the way for the expanded use of recycled asphalt pavement (RAP) in the country’s road projects. Tianjin TianHeJianLing Road & Bridge Engineering Technology is a pioneer in the use of RAP in China. The mixes its Ammann ABA UniBatch and Uniglobe asphalt plants produce are being scrutinised
  • Evonik’s VESTENAMER, part of the rubber road revolution
    February 21, 2019
    Rubber modified bitumen is gaining ground, according to speciality chemicals business Evonik The intensified search for better road durability and lower traffic noise - both environmental concerns - has meant an increasing market for rubber-modified bitumen. At the same time, raw material costs for asphalt and specifically for asphalt modification compounds have increased considerably, creating another obstacle to cost-effective road construction. The stakes are high for getting roads more durable
  • CONTROLS tackles fibre-reinforced concrete with new testing system
    July 19, 2017
    Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings. However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specim