Skip to main content

CONTROLS tackles fibre-reinforced concrete with new testing system

Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings. However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specim
July 19, 2017 Read time: 2 mins
Configuration of ADVANTEST controls system with flexural testing frame
Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings.


However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specimen and the consequent loss of the test results. For this reason, the International Standards require a minimum frame stiffness of 200 kN/mm.

2139 CONTROLS has recently added to its range of flexural testing frames with a new 200 kN capacity model especially designed to test FRC and sprayed concrete specimens, exceeding the Standards' stiffness requirements. The additional stiffness comes from the construction of the frame sections and the layout which keeps the specimen aligned with the frame crossbeams maximising structural rigidity. The new layout also allows easier frontal specimen loading and positioning, according to CONTROLS. It can accommodate large specimens such as slabs, flagstones, concrete beams and kerbs up to 650mm long. The frame is fitted with a high-accuracy load cell and can be provided with a LDT displacement transducer to read piston travel.

For more information on companies in this article

Related Content

  • Bridge and tunnel concrete testing vital for longevity
    July 9, 2012
    Modern technology is making testing more efficient and reliable, increasing productivity and reducing costs, as Patrick Smith reports A few years ago, visual inspection of an 18-year-old bridge by ARRB in Australia identified considerable cracking in the precast, prestressed deck planks as well as in the cast in situ deck overlay. Laboratory examination indicated that the deck planks and the deck overlay were suffering from a strong case of alkali-aggregate reaction (AAR). Testing of concrete cores drilled
  • A flexible approach to concrete testing
    February 20, 2012
    One of the world's most versatile building materials is subject to a variety of tests to make sure it is fit for purpose. Patrick Smith reports
  • New methods allow concrete testing on the spot
    July 20, 2015
    This month we look at two new methods which are allowing concrete to be tested on the spot, and [over the page] we catch up on the latest news from concrete testing equipment suppliers - Kristina Smith writes Sometimes test results can be very bad news. If the concrete pavement or bridge abutment has already been poured, and if the concrete does not meet the specification, the outcome could be very expensive remedial work.
  • New equipment for materials testing
    January 13, 2014
    Leading formwork manufacturers have secured some impressive contracts in Africa, as the continent’s transport infrastructure continues to improve at a rapid pace. Meanwhile, other bridgework equipment companies are also seeing their products in demand in Africa, as well as North America and Australia. Guy Woodford reports