Skip to main content

Bacteria provide route to future fuels

An innovative future fuel source could be provided by bacteria, according to researchers working with the US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.
April 26, 2012 Read time: 2 mins
An innovative future fuel source could be provided by bacteria, according to researchers working with the 5275 US Department of Energy (DOE). Strains of Escherichia colibacteria have been developed that are able to digest switchgrass biomass and then synthesise the sugars into three transportation fuels.

The work has been carried out by the DOE’s 5287 Joint BioEnergy Institute (JBEI) and the initial results suggest that the bacteria can carry out this process without the need for help from enzyme additives. The JBEI claims that using the bacteria will cut a significant cost out of processing switchgrass biomass into fuel by removing the need for expensive enzymes to depolymerise cellulose and hemicellulose into fermentable sugars. According to the JBEI, this will allow a major reduction in fuel production costs by consolidating the depolymerisation of cellulose and hemicellulose into sugars, and fermenting the sugars into fuels, into a single step.

A paper in the 5288 Proceedings of the National Academy of Sciences (PNAS) describes this work. The paper is called, "Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli."

JBEI researchers engineered strains of the bacteria to express several enzymes that enable them to digest cellulose and hemicellulose. This is the first successful demonstration of the production of all three forms of transportation fuels (petrol, kerosene and diesel) using switchgrass, one of the highest potential feedstocks for advanced biofuels.

The cellulolytic and hemicellulolytic strains of the bacteria can be combined as co-cultures on a sample of switchgrass. These were further engineered with three metabolic pathways allowing the bacteria to produce fuel substitute or precursor molecules suitable for petrol, diesel and kerosene.

Related Content

  • Is Intelligent Compaction the future of density measurement?
    June 18, 2012
    Research in the US has shown that using Intelligent Compaction (IC) for quality control purposes can lead to longer-lasting pavements and therefore lower whole life costs. Now the major roller manufacturers are investing heavily in developing new technologies that will meet emerging specifications in the States. “It may take five to ten years but I think that IC will be widely used for both soils, aggregate base and asphalt pavement materials in the US,” said Bob Horan, senior regional engineer at the Asph
  • Smart trucks - promoting truck operation standards
    February 27, 2012
    Paul Nordengen of South Africa's Council for Scientific and Industrial Research (CSIR) introduces a comprehensive self-regulation initiative to improve road wear, road safety and transport productivity in South Africa
  • Clean onsite power system introduced
    October 12, 2018
    An innovative onsite power source utilising fuel cell technology has been developed jointly by Intelligent Energy and Taylor Construction Plant (TCP Ltd). This novel, no-emission power product meets the very strictest environmental legislation, allowing it to be used in low emission zones in urban areas or in enclosed areas such as underground quarries, tunnels or carparks where ventilation may be limited. The firms say that this off-grid hydrogen fuel cell power product is designed to meet the changing ne
  • Dual layer, hot to hot paving at German airport
    August 18, 2015
    An airport in Germany has seen the use of very innovative asphalt paving techniques, with the use of dual-layer, hot-to-hot working. The method was used to meet a very tight schedule for the runway rebuilding work, while also delivering the high quality required. Two InLine Pave trains from Vögele were used at Rostock-Laage Airport to lay a new surface and binder course. The operation was innovative as the process used both hot-to-hot, echelon paving as well as dual layer, hot-on-hot working. Using this