Skip to main content

Teesing develops fast 700 bar hydrogen vehicle refuelling system

A Dutch maker of valves, couplings and flow regulators claims it has developed what it calls a “sustainable 700-bar filling technique” for hydrogen cars. The company, Teesing, says its PusH project successfully filled cylinders fast and efficiently with hydrogen at 700 bar. The system runs at 700 bar because hydrogen has a lower energy content than natural gas, which means that the same volume contains three times less energy. Refuelling hydrogen at a higher pressure, 700 bar, supplies enough energ
April 13, 2015 Read time: 2 mins
A Dutch maker of valves, couplings and flow regulators claims it has developed what it calls a “sustainable 700-bar filling technique” for hydrogen cars.

The company, 8063 Teesing, says its PusH project successfully filled cylinders fast and efficiently with hydrogen at 700 bar.

The system runs at 700 bar because hydrogen has a lower energy content than natural gas, which means that the same volume contains three times less energy.

Refuelling hydrogen at a higher pressure, 700 bar, supplies enough energy to give a hydrogen car a respectable range, Teesing reports. “The hydrogen cylinder will have to be filled at 700 bar within three minutes, because most consumers will not wait longer than that at the filling station,” the company said in a written statement.

The problem with filling hydrogen gas at high speed is it gas expands when it becomes hot. Currently, the solution is to pre-cool the hydrogen gas, but this inefficient method results in unnecessary loss of energy. To solve this, Teesing says it has developed a system which counteracts the expansion.

The cylinder is first filled with water at a pressure of 700 bar, after which the water is displaced by introducing hydrogen gas into the cylinder at 700 bar.

Teesing reported that prototypes have been tested successfully and a patent has been issued for the PusH principle.

“No expansion, no heating, less energy loss and still possible to fill up FCVs quickly up to 700 bar. This method has the additional advantage that no extra action is required to moisten the hydrogen: fuel cells function more efficiently if the hydrogen has been moistened.”

Teesing’s partners in the project are 4053 Tongji University Shanghai, China, along with WEH, Hydrogen refuelling components, based in Germany, and Itensify, a high pressure and flow control systems business in the Netherlands.

For more information on companies in this article

Related Content

  • RAP Drum Benninghoven’s system in counter flow – The RAP solution for the future
    May 21, 2014
    Benninghoven’s Ralf Port talks about the German firm’s development with partner BAM of its counter flow parallel drum system for RAP material The asphalt industry constantly searches for new solutions in order to optimise processes within the asphalt plant. A major subject is the increase of RAP content in all recipes. Recycling Parallel Drum Systems work in various sizes and at various power levels. This technique has been established by different producers over the decades. However, all kinds of concepts
  • Asphalt plant technology meets market needs
    February 16, 2012
    Plants for mixing asphalt are becoming more sophisticated than ever, while users are looking for ecological and technological benefits. Patrick Smith reports. When the Adige Bitumi Group decided to renew its old M 260 plant it chose to collaborate with Marini for the design and development of a plant with production of 280-300tonnes/hour.
  • Advanced asphalt plant innovations
    November 30, 2022
    Key advances are being seen in the asphalt plant market, with leading manufacturers developing new systems to produce materials more efficiently and with lower emissions, while using more recycled asphalt pavement (RAP) and also offering greater mobility
  • Asphalt plants: alternative fuels on the horizon
    November 22, 2022
    Many asphalt plant manufacturers such as Ammann, Benninghoven and Fayat have already developed contingencies for alternative fuels.