Skip to main content

Low construction engine emissions project

The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project. Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier o
October 18, 2016 Read time: 2 mins
The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project.

Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as 178 Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier of emissions reduction and fuel efficiency technology.

The aim of the project is to develop a new drivetrain system that will reduce carbon emissions and have better energy storage. This new drivetrain will be used for a range of off-highway equipment.

The three and half year project is expected to begin in December and will focus on developing and commercialising a leading edge hydrostatic, continuously variable transmission with a flywheel-based energy storage system. This is expected to deliver improved performance along with reduced fuel consumption and CO2 emissions. It should also allow manufacturers of off-highway equipment to downsize engines across a wide range of construction machines.

Flywheel-based energy storage technology is ideally suited to off-highway and construction equipment applications because it offers a robust, low-cost way to allow engine downsizing while improving machine productivity.

Staff from the School of Engineering and Technology will provide advanced simulation, modeling and design expertise in the area of computational fluid dynamics, rotadynamics and finite element analysis. The research will also benefit from the University’s High Performance Computing cluster.

Dr Rodney Day, Associate Dean (Research and Commercial) in the School of Engineering and Technology said: ‘This is a fantastic opportunity to collaborate with two leading companies to develop this novel technology for the off-highway market.’

For more information on companies in this article

Related Content

  • MAD about Vitronic in Germany
    April 30, 2025
    Vitronic has supplied two of its latest sensor columns to the project MAD Urban (Managed Automated Driving for Urban Mobility and Logistics) being set up in Braunschweig (Brunswick).
  • Advances in asphalt testing
    August 31, 2012
    The latest asphalt testing equipment brought onto the market is both innovative and highly accurate as Kristina Smith reports Advanced pavement design requires advanced test equipment. And advanced test equipment takes time and money to design, engineer and produce. But if your expensive testing machine could perform a few more tricks, buying one would make financial sense to more organisations. This is the thinking behind IPC Global’s new Uniaxial Fatigue Test Kit for its Asphalt Performance Mixer Tes
  • Caterpillar’s 966K XE wheel loader will take centre stage at INTERMAT
    January 6, 2017
    Caterpillar, in cooperation with the Cat dealer in France, Bergerat Monnoyeur, says that innovative design of its 966K XE wheel loader will take centre stage at Intermat.
  • Caterpillar’s 966K XE wheel loader will take centre stage at INTERMAT
    February 2, 2012
    Caterpillar, in cooperation with the Cat dealer in France, Bergerat Monnoyeur, says that innovative design of its 966K XE wheel loader will take centre stage at Intermat.