Skip to main content

Low construction engine emissions project

The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project. Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier o
October 18, 2016 Read time: 2 mins
The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project.

Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as 178 Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier of emissions reduction and fuel efficiency technology.

The aim of the project is to develop a new drivetrain system that will reduce carbon emissions and have better energy storage. This new drivetrain will be used for a range of off-highway equipment.

The three and half year project is expected to begin in December and will focus on developing and commercialising a leading edge hydrostatic, continuously variable transmission with a flywheel-based energy storage system. This is expected to deliver improved performance along with reduced fuel consumption and CO2 emissions. It should also allow manufacturers of off-highway equipment to downsize engines across a wide range of construction machines.

Flywheel-based energy storage technology is ideally suited to off-highway and construction equipment applications because it offers a robust, low-cost way to allow engine downsizing while improving machine productivity.

Staff from the School of Engineering and Technology will provide advanced simulation, modeling and design expertise in the area of computational fluid dynamics, rotadynamics and finite element analysis. The research will also benefit from the University’s High Performance Computing cluster.

Dr Rodney Day, Associate Dean (Research and Commercial) in the School of Engineering and Technology said: ‘This is a fantastic opportunity to collaborate with two leading companies to develop this novel technology for the off-highway market.’

For more information on companies in this article

Related Content

  • Engine innovations will cut emissions and increase performance
    October 1, 2014
    A series of innovations in engine technology will cut emissions and deliver fuel savings for customers - Mike Woof writes The start of 2014 saw the commencement of the final phase of the current set of engine emissions requirements for Europe and North America. With the introduction of the first set of Tier 4 Final/ Stage IIV emissions regulations, new generation diesel engines used in construction will deliver cleaner operating performance than ever before. These highly efficient engines have been devel
  • Decarbonising construction for the future
    August 29, 2023
    Decarbonising construction can deliver the sustainability needed for the future.
  • Innovation Day’s at Bomag’s Boppard factory
    February 6, 2020
    Bomag has unveiled an array of new technologies during 2019, with a strong focus on advanced compaction solutions.
  • Environmental impact drives warm mix growth
    November 14, 2012
    Warm mix asphalt can save energy and the environment, cutting emissions of carbon dioxide and other harmful gases, but are environmental arguments enough for clients and contractors? Kristina Smith asks Though popular in the United States, warm mix asphalt is still a technology waiting to happen in the rest of the world. Chemical companies who imagined a meteoric rise in sales are still waiting for the right economic conditions to allow warm mix to start taking serious market share from hot mix. “In Europe