Skip to main content

Low construction engine emissions project

The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project. Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier o
October 18, 2016 Read time: 2 mins
The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project.

Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as 178 Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier of emissions reduction and fuel efficiency technology.

The aim of the project is to develop a new drivetrain system that will reduce carbon emissions and have better energy storage. This new drivetrain will be used for a range of off-highway equipment.

The three and half year project is expected to begin in December and will focus on developing and commercialising a leading edge hydrostatic, continuously variable transmission with a flywheel-based energy storage system. This is expected to deliver improved performance along with reduced fuel consumption and CO2 emissions. It should also allow manufacturers of off-highway equipment to downsize engines across a wide range of construction machines.

Flywheel-based energy storage technology is ideally suited to off-highway and construction equipment applications because it offers a robust, low-cost way to allow engine downsizing while improving machine productivity.

Staff from the School of Engineering and Technology will provide advanced simulation, modeling and design expertise in the area of computational fluid dynamics, rotadynamics and finite element analysis. The research will also benefit from the University’s High Performance Computing cluster.

Dr Rodney Day, Associate Dean (Research and Commercial) in the School of Engineering and Technology said: ‘This is a fantastic opportunity to collaborate with two leading companies to develop this novel technology for the off-highway market.’

For more information on companies in this article

Related Content

  • It's all about profit, people and the planet
    February 18, 2025
    Sit in on our latest roundtable discussion on sustainability in the construction and aggregates industries, brought to you by Global Highways and Aggregates Business. AB editor Guy Woodford has been talking to two world-class experts: Jeremy Harsin from Cummins and Michael Gomes from Topcon. Make your planning, your workflows, your contract tenders, and your sites as sustainable as possible. “Sustainability is really about profit, people and the planet,” say our experts. “Being able to drive that is the work that matters.”
  • Doosan demonstrates ‘Concept X’ construction jobsite control
    November 25, 2019
    Doosan Infracore has unveiled its high-tech ‘Concept-X’ construction jobsite control solution during a special demonstration event at its proving grounds in Boryeong City, South Korea.
  • Earthmoving market introductions
    February 11, 2020
    Earthmoving innovations are coming to market in the shape of new excavators and wheeled loaders
  • Greener transport infrastructure
    February 16, 2024
    Crossing the carbon challenge: Pioneering carbon reduction on the UK’s ‘greenest’ major infrastructure project Paul Taylor – AtkinsRéalis Carbon Manager, Lower Thames Crossing Roads North