Skip to main content

Low construction engine emissions project

The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project. Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier o
October 18, 2016 Read time: 2 mins
The University of Hertfordshire is collaborating in a £9 million project aimed at reducing carbon emissions from off-highway machinery. The University of Hertfordshire’s School of Engineering and Technology is part of a specialist engineering consortium working on the project.

Benefiting from more than £4 million in funding from the Advanced Propulsion Centre UK Limited (APC), the project includes companies such as 178 Caterpillar subsidiary Turner Powertrain Systems and Torotrak, a developer and supplier of emissions reduction and fuel efficiency technology.

The aim of the project is to develop a new drivetrain system that will reduce carbon emissions and have better energy storage. This new drivetrain will be used for a range of off-highway equipment.

The three and half year project is expected to begin in December and will focus on developing and commercialising a leading edge hydrostatic, continuously variable transmission with a flywheel-based energy storage system. This is expected to deliver improved performance along with reduced fuel consumption and CO2 emissions. It should also allow manufacturers of off-highway equipment to downsize engines across a wide range of construction machines.

Flywheel-based energy storage technology is ideally suited to off-highway and construction equipment applications because it offers a robust, low-cost way to allow engine downsizing while improving machine productivity.

Staff from the School of Engineering and Technology will provide advanced simulation, modeling and design expertise in the area of computational fluid dynamics, rotadynamics and finite element analysis. The research will also benefit from the University’s High Performance Computing cluster.

Dr Rodney Day, Associate Dean (Research and Commercial) in the School of Engineering and Technology said: ‘This is a fantastic opportunity to collaborate with two leading companies to develop this novel technology for the off-highway market.’

For more information on companies in this article

Related Content

  • Innovative paving techniques being utilised
    February 15, 2021
    Innovative warm mix materials are now being offered by key contractors to deliver longer surface life combined with more sustainable operations
  • Bitumen additives raise environmental questions
    February 14, 2012
    New products, including additives, are coming onto the market to help reduce the cost of producing bitumen. Patrick smith reports. According to Eng. Paolo Visconti of Iterchimica, environmental issues and the health and safety of operators of manufacturing plants and workers laying bituminous mixes have raised long debates on the possible harmfulness of fumes which are emitted when heating these mixes at the temperatures (160-180°C) required for their production. "If, on the one hand, the effects on operato
  • Bitumen challenges and opportunities for the road construction sector
    December 12, 2018
    The road sector faces challenges with regard to bitumen - Gülay Malkoç reports
  • Keestrack’s growing presence in China
    November 21, 2018
    Keestrack is introducing a comprehensive range of large tracked mobile machines to the Chinese market. These encompass all relevant screening and crushing technologies for quarrying, recycling and aggregates industry sectors. Four important new models are being unveiled. The B4 jaw crusher ensures less wear and better crushing capacities due to its double-deck vibrating pre-screen (2300 x 1000mm). The proven 1100 x 700mm jaw crusher (maximum feed size 600mm) reaches an hourly output up to 400tonnes and pro