Skip to main content

Technology to ensure continuity and quality for asphalt production

A variety of complex factors are involved in the production of hot asphalt mixes, with the process vulnerable to sudden stoppages of the equipment. The problems caused by a need for unplanned maintenance are high, as the cost of a plant stoppage is high. In order to minimise disruptions to production, new technologies can be used for wear components. Electronic monitoring of asphalt plant motors during production can boost efficiency, replacing corrective maintenance with preventive and predictive maintenan
June 4, 2019 Read time: 3 mins
Monitoring component performance at the control panel can highlight wear issues
A variety of complex factors are involved in the production of hot asphalt mixes, with the process vulnerable to sudden stoppages of the equipment. The problems caused by a need for unplanned maintenance are high, as the cost of a plant stoppage is high. In order to minimise disruptions to production, new technologies can be used for wear components. Electronic monitoring of asphalt plant motors during production can boost efficiency, replacing corrective maintenance with preventive and predictive maintenance.


Preventive maintenance is a widely used method for maximising equipment uptime. Scheduled stoppages of machines are made according to the expected amount of wear, based on average statistics for generic equipment applications. Predictive maintenance is much more complex because it considers the condition and use of components, according to a specific application. This is used in order to schedule maintenance at the correct time. According to Marcelo Zubaran, application engineer and product specialist at 6241 CIBER Equipamentos Rodoviários, “Obtaining the correct information at the right moment regarding a component wear or a tendency of failure of a motor is a major advantage to asphalt mix production.” Predictive maintenance can only be implemented when using systems that continuously monitor components. Both mechanical and electronic sensors may be used for this process.

A predictive maintenance plan can be used for components featuring an abrasive wear rate, which develops over the lifetime of a tool. A plant’s mixer vanes exhibit wear proportional to the time they have been used. Examining the wear on the vanes, it is possible to predict when to replace the component. The condition of the plant’s bag filters are monitored indirectly during production by pressure meters installed in the filter box. This system indicates if the filters are likely to saturate. The meters help to prevent damage to the filter elements as well as wear to the plant hood.

State-of-the-art technologies can also be employed, such as constant monitoring of the power consumption of motors during production. When a motor starts drawing more power than usual, it can be a sign that a fault is developing. This type of fault diagnosis system also provides real-time information on the operating conditions of the motors to the plant operator. “If any of the plant motors are not operating at their optimum performance, an alarm is triggered immediately. The operator can select to stop production of an asphalt mix and then check the condition of the motor and even stop the plant if necessary. In this way, predictive maintenance technology allows the user to perform preventive maintenance," according to Zubaran.

For this technology to work, it is necessary for the motors to be connected to an electrical current measuring device. This system then has to be connected to a data transmission network. Frequency inverters are used to vary the speed of motors and are also capable of measuring the current running through a motor. In addition, soft start technologies used for big motors can also measure the electric current. Integral starter systems can be utilised to measure the current passing through motors also. These devices require a network interface to allow data to pass over to the plant’s computer, which will then analyses the information using software.

For more information on companies in this article

Related Content

  • Sophisticated asphalt paving control technology
    July 27, 2020
    Advances in asphalt paving control systems are helping contractors deliver higher efficiency
  • Dream machines: Machine technology takes productivity to new levels
    September 9, 2016
    The adoption of new technology will boost productivity for machinery users - Colin Sowman writes Since the inception of earthmoving machinery, equipment manufacturers have been striving to make the process faster, quieter, easier and more fuel efficient. Now many manufacturers are looking at ways to improve the efficiency of drive systems to reduce complexity, maintenance and fuel use.
  • US asphalt and quarry show highlights new technology
    May 8, 2015
    New technology was one key focus area for the World of Asphalt/AGG1 event run recently in the US city of Baltimore - Mike Woof writes Technology has been a major focus for the combined World of Asphalt and AGG1 2015 exhibition and conference held in Baltimore. The exhibition area attracted 450 exhibitors and covered a larger area than for previous events, while over 10,000 education season tickets were bought by those wanting to attend the presentation sessions. The event was held from March 17th- March
  • Roadtec’s improved Shuttle Buggy offers increased uptime
    April 23, 2018
    A key development for the latest version of Roadtec’s Shuttle Buggy material transfer vehicle is its improved uptime. As Roadtec continues to develop this machine, it is improving performance and capabilities, boosting output while lowering running costs. The firm first introduced its Guardian telematics system on the Shuttle Buggy some years ago, but has continued to develop the capabilities of this package. The addition of more sensors within the Shuttle Buggy at key points allows performance and wear to