Skip to main content

Technology to ensure continuity and quality for asphalt production

A variety of complex factors are involved in the production of hot asphalt mixes, with the process vulnerable to sudden stoppages of the equipment. The problems caused by a need for unplanned maintenance are high, as the cost of a plant stoppage is high. In order to minimise disruptions to production, new technologies can be used for wear components. Electronic monitoring of asphalt plant motors during production can boost efficiency, replacing corrective maintenance with preventive and predictive maintenan
June 4, 2019 Read time: 3 mins
Monitoring component performance at the control panel can highlight wear issues
A variety of complex factors are involved in the production of hot asphalt mixes, with the process vulnerable to sudden stoppages of the equipment. The problems caused by a need for unplanned maintenance are high, as the cost of a plant stoppage is high. In order to minimise disruptions to production, new technologies can be used for wear components. Electronic monitoring of asphalt plant motors during production can boost efficiency, replacing corrective maintenance with preventive and predictive maintenance.


Preventive maintenance is a widely used method for maximising equipment uptime. Scheduled stoppages of machines are made according to the expected amount of wear, based on average statistics for generic equipment applications. Predictive maintenance is much more complex because it considers the condition and use of components, according to a specific application. This is used in order to schedule maintenance at the correct time. According to Marcelo Zubaran, application engineer and product specialist at 6241 CIBER Equipamentos Rodoviários, “Obtaining the correct information at the right moment regarding a component wear or a tendency of failure of a motor is a major advantage to asphalt mix production.” Predictive maintenance can only be implemented when using systems that continuously monitor components. Both mechanical and electronic sensors may be used for this process.

A predictive maintenance plan can be used for components featuring an abrasive wear rate, which develops over the lifetime of a tool. A plant’s mixer vanes exhibit wear proportional to the time they have been used. Examining the wear on the vanes, it is possible to predict when to replace the component. The condition of the plant’s bag filters are monitored indirectly during production by pressure meters installed in the filter box. This system indicates if the filters are likely to saturate. The meters help to prevent damage to the filter elements as well as wear to the plant hood.

State-of-the-art technologies can also be employed, such as constant monitoring of the power consumption of motors during production. When a motor starts drawing more power than usual, it can be a sign that a fault is developing. This type of fault diagnosis system also provides real-time information on the operating conditions of the motors to the plant operator. “If any of the plant motors are not operating at their optimum performance, an alarm is triggered immediately. The operator can select to stop production of an asphalt mix and then check the condition of the motor and even stop the plant if necessary. In this way, predictive maintenance technology allows the user to perform preventive maintenance," according to Zubaran.

For this technology to work, it is necessary for the motors to be connected to an electrical current measuring device. This system then has to be connected to a data transmission network. Frequency inverters are used to vary the speed of motors and are also capable of measuring the current running through a motor. In addition, soft start technologies used for big motors can also measure the electric current. Integral starter systems can be utilised to measure the current passing through motors also. These devices require a network interface to allow data to pass over to the plant’s computer, which will then analyses the information using software.

For more information on companies in this article

Related Content

  • Reducing asphalt plant downtime
    December 12, 2018
    How asphalt plant control add-ons make operation easier while reducing costly downtime - *Carlos Cardenas The word downtime might as well be a curse word in the asphalt production industry. As any operator will say, unplanned plant shutdowns can end up costing a producer heavily in lost production, not to mention a line of unhappy truck drivers and asphalt customers. The key is to get ahead of the problem and spot issues before they skyrocket in severity. Fortunately, some asphalt plant manufacturers offe
  • Wirtgen’s asphalt plant technology
    September 29, 2020
    Wirtgen’s asphalt plant technology offering includes both the Benninghoven and Ciber brands
  • Asphalt plant innovations from key firms
    June 12, 2017
    Asphalt plant builders continue to develop new technologies to meet different demands from clients. Marini says that in addition to developing new and more sophisticated asphalt plants, the firm is also meeting demands from customers looking to upgrade existing asphalt plants with the addition of new systems. These can be used to boost output and material quality, while also delivering new grades of mixes. At the same time, plant upgrades can reduce the environmental profile of a plant, while improving its
  • Ciber’s iNOVA 2000 plant for Latin America market
    August 25, 2016
    Now part of the Wirtgen Group, Brazilian firm CIBER produces asphalt plants for the Latin American market and has developed a series of technological innovations for this sector. The firm is now introducing its new iNOVA 2000 plant design that it will offer for Latin America. The firm has developed the machine based on its experience of the sector, while also incorporating the latest advances in asphalt plant technology. The plant has benefited from the firm’s research into the needs of different asph