Skip to main content

Bitumen balance in RAP

*Bitumen from recycled asphalt can be rejuvenated using additives, according to Iterchimica The use of reclaimed asphalt pavement (RAP) is common in many countries. However, the aged bitumen from RAP has a lower penetration and is more viscous than when first mixed. This reclaimed bitumen is generally balanced by the addition of fresh binder that is softer than those typically used to produce hot mixes. But balancing penetration and softening point or viscosity will not deliver bitumen identical to the orig
November 29, 2012 Read time: 4 mins
Recycled asphalt pavement can benefit from additives to rejuvenate bitumen content

*Bitumen from recycled asphalt can be rejuvenated using additives, according to Iterchimica

The use of reclaimed asphalt pavement (RAP) is common in many countries. However, the aged bitumen from RAP has a lower penetration and is more viscous than when first mixed. This reclaimed bitumen is generally balanced by the addition of fresh binder that is softer than those typically used to produce hot mixes. But balancing penetration and softening point or viscosity will not deliver bitumen identical to the original, so one option is regenerating the aged binder in order to rebalance the molecular structure of the bitumen. This process involves the use of special organic compounds with suitable electron distribution to interact with the aged molecular associations.

Iterlene ACF 1000 Green was developed by 252 Iterchimica to perform this task, when added to RAP mix. And its performance has been confirmed by the research reports of Transport Research Laboratory (777 TRL) in the UK, as well as the University of Milan and University of Rome in Italy.

The TRL Report stated that the rejuvenator ACF 1000 “does recover properties that have degenerated in aged bitumen,” In particular it showed that, “Iterlene ACF 1000 Green does allow the original values of the three principal characteristics of bitumen (penetration, softening point and viscosity) to be recovered for binder recovered from reclaimed asphalt.”

“The properties of bitumen recovered from reclaimed asphalt that are returned by the addition of Iterlene ACF 1000 Green do translate into the required properties of the new asphalt manufactured with that binder.”

“The use of Iterlene ACF 1000 Green will make it easier to comply with the requirements of clause 902 of the Specification for highway works.”

TRL also performed compaction tests using the gyratory compactor. The air voids content was reduced by between 19% and 34% of the values without rejuvenator. It was stated that “These changes are, in many ways, more critical than changes in penetration or softening point because it shows a return to a property of the asphalt that is required for any mixtures to be able to be constructed in a manner that it will work successfully on site.”

Under the supervision of the Milan Polytechnic (Department of Hydraulics, Environment, Road Infrastructure), Iterchimica launched in June 2011 a research project on the use of rejuvenators in asphalt mixes containing 30% of RA.

A field test was organised in Valencia de Alcantara (South-West Spain) together with Campi y Jovè (Iterchimica’s distributor for Spain). About 100tonnes of asphalt mix, containing 30% RAP and the Iterlene ACF 1000 Green rejuvenator, was produced; another 100tonnes of asphalt mix was produced as control.

Both mixes were prepared with the same granular thickness (aggregate curve), density, void content, and the same bitumen 50/70 Pen. The mix with no RAP and no rejuvenator contained originally 4.0 % bitumen. In the mix containing RAP and rejuvenator the extracted bitumen was 4.17%.

Samples of both of mixes were studied and tested at the University of Milan (Polytechnic) determining binder content, the DSR on the binder, air voids and density, compactability, stiffness and fatigue. These tests all showed performance to be well within parameters.

The studies on the chemical behavior of the Iterchimica ACF 1000 Green were carried out by the University of Rome in the Department of Chemical Engineering, Material and Environment. These show that the main mechanisms for the ageing of bitumen are oxidation, loss of volatiles, and molecular rearrangement. Oxygen incorporation increases the polarity, allowing the formation of molecular associations that harden the binder.

Aged bitumen was extracted from an RAP mix and the same bitumen was added with 4% ACF 1000. Both samples and the additive were then analysed. The complexity of the bitumen structure and the small amount of additives made it hard to detect the chemical reaction and formation of new chemical compounds. But a logical explanation is that the additive interacts at electronic and molecular levels, by “disturbing” the molecular associations formed during ageing, and creating new aggregations. Its action is more related to the formation of secondary links than to the creation of main links.

The molecular associations form as a result of ageing and hardening: their total or partial elimination results in a rejuvenated binder that is less viscous and performs better.

For more information on companies in this article

Related Content

  • CONTROLS widens capabilities for asphalt testing
    March 3, 2016
    The CONTROLS Group is widening its array of asphalt testing technologies. New from the Group is the PAVELAB50. This has been developed by the PAVELAB SYSTEMS division and is an automatic closed loop system for the separation and extraction of bitumen, filler and aggregates asphalt samples. This uses solvents, according to ASTM D2172 and EN 12697-1. The test methods are used for measuring bitumen in hot-mixed paving mixtures and paving samples for specification acceptance, service evaluation, control and res
  • CONTROLS widens capabilities for asphalt testing
    January 6, 2017
    The CONTROLS Group is widening its array of asphalt testing technologies. New from the Group is the PAVELAB50. This has been developed by the PAVELAB SYSTEMS division and is an automatic closed loop system for the separation and extraction of bitumen, filler and aggregates asphalt samples. This uses solvents, according to ASTM D2172 and EN 12697-1. The test methods are used for measuring bitumen in hot-mixed paving mixtures and paving samples for specification acceptance, service evaluation, control and res
  • Evonik’s VESTENAMER, part of the rubber road revolution
    February 21, 2019
    Rubber modified bitumen is gaining ground, according to speciality chemicals business Evonik The intensified search for better road durability and lower traffic noise - both environmental concerns - has meant an increasing market for rubber-modified bitumen. At the same time, raw material costs for asphalt and specifically for asphalt modification compounds have increased considerably, creating another obstacle to cost-effective road construction. The stakes are high for getting roads more durable
  • Without political intervention, new technologies for using waste rubber in roads will not take off
    November 14, 2017
    New technologies to make rubber modification of asphalt are under development and testing. But political will is the real key to diverting old tyres from landfill - Kristina Smith reports. A new way to introduce end-of-life tyre rubber into asphalt mixes could be the key to diverting more tyres away from landfill, according to Dr Davide Lo Presti, principal research fellow at the Nottingham Transportation Engineering Centre (NTEC) at the University of Nottingham.