Skip to main content

Scrap tyres for more durable concrete

Earthquake damage to concrete structures can be reduced by using rubber from waste tyres, according to new research at The University of Sheffield. The research team claims that using recycled tyre rubber in concrete can make it five times more resistant to earthquakes.
July 3, 2017 Read time: 3 mins

Earthquake damage to concrete structures can be reduced by using rubber from waste tyres, according to new research at The University of Sheffield. The research team claims that using recycled tyre rubber in concrete can make it five times more resistant to earthquakes. The EU-funded Anagennisi project is led by experts from the Department of Civil Engineering at the university. This group has demonstrated that rubber, steel and textile fibres extracted from used tyres can be recycled in concrete to make infrastructure tougher and more resistant to extreme events.

The potential for this material use is substantial and it could offer an effective solution to the problem of scrap tyres.  Each year in the EU, more than three million tonnes of tyres reach the end of their lives. Tyres are made of roughly 80% rubber, reinforced with steel and textile fibre. Currently, most of Europe’s post-consumer tyres are incinerated, despite environmental concerns and the fact that three to five times more energy goes into producing the tyre than is recovered.

Professor Kypros Pilakoutas is coordinating the project and said, “Incinerating such high-quality materials is plainly wrong. By demonstrating that they can be reused for their original properties, we are hoping that the decision makers will take steps towards limiting incineration to materials that cannot be reused. Anagennisi has also led to the development of three new materials with unique properties that will enable engineers to re-think how they solve problems in a range of applications.”

Recycled rubber can replace mineral aggregates in concrete and allow buildings and other structures to flex up to 8% along their length – 40 times more than structures made from conventional concrete.

Tyre steel wire is exceptionally strong and if blended with manufactured steel fibres increases the flexural capacity of concrete – saving on virgin materials and reducing energy input requirements by up to 97%. Being much thinner than manufactured steel fibres, these fibres also help control cracks more efficiently.

Textile polymer fibres, used primarily as reinforcement in passenger tyres, is also of high quality and strength and can be used to control cracking at the early stages of concrete curing. Textile fibres have also been found to prevent explosive concrete spalling (crumbling, breaking up) during fire.

Professor Peter Waldron, MD of project partner Twincon which has established the first processing facility for tyre wire, said, “These highly engineered materials have valuable properties and deserve to be recycled.”

The research is of interest to engineers, architects, contractors, designers, concrete manufacturers, material suppliers, specifiers and researchers. The next stage is to exploit the new concrete materials in various structural applications such as vibration isolation and bridge bearings.

As part of the project, demonstration projects have already been undertaken in various European countries to convince contractors and infrastructure owners of the benefits. A series of shaking table tests were conducted in Romania at the Technical University of Iasi using rubber in concrete, proving that seismic resistance can be enhanced by 500% compared to conventional concrete. In Spain, tunnel linings were sprayed and concrete railway sleepers were prefabricated using recycled tyre steel fibres.  

Related Content

  • Innovative additive for use in recycled asphalt applications
    August 13, 2014
    Biorefiner Arizona Chemical has spent three years developing a new asphalt additive which it says will revolutionise the use of RAP in road pavements. Sylvaroad RP1000 will allow much higher proportions of RAP to be used and produce a better-performing pavement, according to the manufacturer. “What it essentially does is mobilise the chemical matrix of these aged binders,”
  • Glaringly good glare panels from Korean manufacturer ETI
    April 4, 2018
    Unbreakable glare panels from Korean company ETI literally bounce back from an accident, according to the manufacturer. The panels are made from EVA, an elastomeric polymer that is soft to the touch and extremely flexible, akin to rubber. It is popularly known as an expanded rubber or foam rubber and is extremely resilient with good clarity and gloss and stress-crack resistance. Products using EVA include ski boots, bicycle saddles, wakeboards and water skis. These properties make ETI’s glare panels suit
  • Innovations in formwork aid project completion
    February 14, 2012
    Innovative formwork solutions are helping to get projects completed on or before time, meaning savings in time and money as Patrick smith reports. The use of flexible, modular formwork to create innovative structures out of concrete is helping to increase productivity and thus drive down completion time and costs.
  • Airport's high demands on asphalt and concrete techniques
    July 11, 2012
    Airport runway, taxiway and parking areas make high demands on paving requirements, both with concrete and asphalt techniques. Mike Woof reports. High quality surface finishes are required in airport environments for runways, taxiways and aircraft parking areas. Because of the speed at which aircraft take off and land and the massive forces exerted due to the weight of the aircraft, particularly during landing, runway structures need to be incredibly strong. The surfaces also have to be constructed to very