Skip to main content

Scrap tyres for more durable concrete

Earthquake damage to concrete structures can be reduced by using rubber from waste tyres, according to new research at The University of Sheffield. The research team claims that using recycled tyre rubber in concrete can make it five times more resistant to earthquakes.
July 3, 2017 Read time: 3 mins

Earthquake damage to concrete structures can be reduced by using rubber from waste tyres, according to new research at The University of Sheffield. The research team claims that using recycled tyre rubber in concrete can make it five times more resistant to earthquakes. The EU-funded Anagennisi project is led by experts from the Department of Civil Engineering at the university. This group has demonstrated that rubber, steel and textile fibres extracted from used tyres can be recycled in concrete to make infrastructure tougher and more resistant to extreme events.

The potential for this material use is substantial and it could offer an effective solution to the problem of scrap tyres.  Each year in the EU, more than three million tonnes of tyres reach the end of their lives. Tyres are made of roughly 80% rubber, reinforced with steel and textile fibre. Currently, most of Europe’s post-consumer tyres are incinerated, despite environmental concerns and the fact that three to five times more energy goes into producing the tyre than is recovered.

Professor Kypros Pilakoutas is coordinating the project and said, “Incinerating such high-quality materials is plainly wrong. By demonstrating that they can be reused for their original properties, we are hoping that the decision makers will take steps towards limiting incineration to materials that cannot be reused. Anagennisi has also led to the development of three new materials with unique properties that will enable engineers to re-think how they solve problems in a range of applications.”

Recycled rubber can replace mineral aggregates in concrete and allow buildings and other structures to flex up to 8% along their length – 40 times more than structures made from conventional concrete.

Tyre steel wire is exceptionally strong and if blended with manufactured steel fibres increases the flexural capacity of concrete – saving on virgin materials and reducing energy input requirements by up to 97%. Being much thinner than manufactured steel fibres, these fibres also help control cracks more efficiently.

Textile polymer fibres, used primarily as reinforcement in passenger tyres, is also of high quality and strength and can be used to control cracking at the early stages of concrete curing. Textile fibres have also been found to prevent explosive concrete spalling (crumbling, breaking up) during fire.

Professor Peter Waldron, MD of project partner Twincon which has established the first processing facility for tyre wire, said, “These highly engineered materials have valuable properties and deserve to be recycled.”

The research is of interest to engineers, architects, contractors, designers, concrete manufacturers, material suppliers, specifiers and researchers. The next stage is to exploit the new concrete materials in various structural applications such as vibration isolation and bridge bearings.

As part of the project, demonstration projects have already been undertaken in various European countries to convince contractors and infrastructure owners of the benefits. A series of shaking table tests were conducted in Romania at the Technical University of Iasi using rubber in concrete, proving that seismic resistance can be enhanced by 500% compared to conventional concrete. In Spain, tunnel linings were sprayed and concrete railway sleepers were prefabricated using recycled tyre steel fibres.  

Related Content

  • Asphalt plant innovations from key firms
    June 12, 2017
    Asphalt plant builders continue to develop new technologies to meet different demands from clients. Marini says that in addition to developing new and more sophisticated asphalt plants, the firm is also meeting demands from customers looking to upgrade existing asphalt plants with the addition of new systems. These can be used to boost output and material quality, while also delivering new grades of mixes. At the same time, plant upgrades can reduce the environmental profile of a plant, while improving its
  • Rubber tyre re-use
    June 18, 2012
    Re-using crumb rubber in asphalt offers numerous benefits – Mike Woof In the US, the use of crumb rubber from old car and truck tyres in asphalt mixes has been tried over a number of years. The technology has improved considerably too, with this approach now offering much longer lasting performance. Georgia Department of Transportation (GDOT) is one of the latest states to adopt this approach and has amended its road construction specifications to include recycled tyre rubber as an alternative to conventi
  • New concrete testing technologies improve speed, safety and quality
    July 8, 2016
    Developments in data processing and management are revolutionising the way concrete strengths can be measured and used to improve efficiencies - Kristina Smith reports on two new technologies A new system that uses thermal imaging to measure the strength of sprayed concrete tunnel linings is being trialled for the first time in London. The brainchild of Dr Benoit Jones, managing director of Inbye Engineering, the technique could lead to improvements in safety, quality and – in the longer run – productivi
  • From rubber to nanotechnology, new additives give longer life
    March 12, 2014
    This month: rubber comes to the rescue for cash-strapped UK authorities and Italian towns plagued by road noise; Japanese nanotechnology fights monsoon damage in India; and a new research programme promises to help define whether ‘sustainable’ bitumen technologies really live up to their billing - Kristina Smith writes A new venture in the UK aims to encourage the use of recycled tyres in road pavements. Billian UK is now manufacturing GTR Pellets which combine bitumen, ground tyre rubber (GTR) and miner