Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • Responsive roadsign developed by student
    August 22, 2013
    A UK student hopes his new lenticular road signs which ‘pulse’ at drivers will lead to a revolution in the way motorists are given information on the roads. Meanwhile, a leading road marking firm is helping keep tourists safe in a spiritually significant town in Umbria, Italy. Guy Woodford reports You may think Charles Gale’s vision of creating the first ‘pulsing’ lenticular road sign was the result of months, even years, spent studying traffic and driver behaviour on the roads of his adopted student c
  • Highways: environmental problem or environmental enhancement?
    March 21, 2016
    Highways need not be a blight on the countryside that many people, urban planners included, believe they will always be. By Bram Miller, director, and Martin Broderick, environmental consultant, at Ramboll Environ While the world’s highway networks bring undoubted economic and social benefits, they are generally perceived to lead to negative environmental impacts. Some may consider this an unfair reputation, but it is difficult to argue that in the majority of cases both the construction and operation of
  • Cross Fraser Partnership wins BC tunnel work
    September 27, 2024
    The partnership for the tunnel work near Vancouver in Canada consists of Pomerleau BC, Bouygues Construction Canada and Fomento de Construcciones y Contratas Canada (FCC) and is supported by design and engineering consultant Arcadis.
  • Istanbul’s new airport benefits from Wirtgen Group machines
    November 22, 2017
    Construction of Istanbul’s new airport facility is benefiting from the use of a large fleet of machines from the Wirtgen Group. When it is complete, this will be the world’s largest airport and will be able to handle 150-200 million passengers/year as well as 6 million tonnes of freight/year. This will make the facility substantially larger than the world’s current largest airport, the Hartsfield-Jackson Atlanta International Airport, which handles around 105 million passengers/year.