Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • SWARCO’s sustainable SOLIDPLUS glass beads
    March 17, 2023
    SWARCO Road Marking Systems says that its next generation SOLIDPLUS premium reflective glass beads combine greater road safety as well as being sustainably produced
  • Manitowoc MLC650 cranes keep Champlain Bridge on track
    October 28, 2016
    Two Manitowoc MLC650s are working on a project to replace the Champlain Bridge that spans the Saint Lawrence River in Montreal, Canada. The engineering consortium - Signature on the Saint Lawrence Construction (SSLC) – is assigned to the task. The capacity and reduced ground preparation made possible by the MLC650’s VPC-MAX attachment – as well as the ease of use of its Crane Control System (CCS) – are helping the team stay on schedule. The Champlain Bridge connects one of North America’s busiest road
  • Managing resource to create more resilient roads
    June 22, 2018
    As pressure increases on the cost and availability of resources, investment in recycling technology continues to grow across the road building industry. To meet its full potential, a greater understanding is needed of material performance to allow the building of more resilient, sustainable and economic networks - *David Smith explains.
  • Managing resource to create more resilient roads
    June 22, 2018
    As pressure increases on the cost and availability of resources, investment in recycling technology continues to grow across the road building industry. To meet its full potential, a greater understanding is needed of material performance to allow the building of more resilient, sustainable and economic networks - *David Smith explains. Over the past decade, the road construction industry has made significant strides in recycling. Reducing the reliance on virgin materials is of environmental importance,