Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • Advances in asphalt testing
    August 31, 2012
    The latest asphalt testing equipment brought onto the market is both innovative and highly accurate as Kristina Smith reports Advanced pavement design requires advanced test equipment. And advanced test equipment takes time and money to design, engineer and produce. But if your expensive testing machine could perform a few more tricks, buying one would make financial sense to more organisations. This is the thinking behind IPC Global’s new Uniaxial Fatigue Test Kit for its Asphalt Performance Mixer Tes
  • Advances in asphalt testing
    June 18, 2012
    The latest asphalt testing equipment brought onto the market is both innovative and highly accurate as Kristina Smith reports Advanced pavement design requires advanced test equipment. And advanced test equipment takes time and money to design, engineer and produce. But if your expensive testing machine could perform a few more tricks, buying one would make financial sense to more organisations. This is the thinking behind IPC Global’s new Uniaxial Fatigue Test Kit for its Asphalt Performance Mixer Tes
  • Hitex speeds surface repairs
    June 24, 2014
    Hitex surfacings have been developed for export markets and have approval for use in different territories. The firm is now exporting the products for use in South East Asia and Latin America and has contracts to use the materials for repairs on a busy highway in India. The Hitex products are suitable for permanent repairs and use recycled materials, with applications including use on wider joints and cracks as a preventative treatment method. A spokesperson for the firm said, “We try to get councils to
  • Lafarge Cement launches Lafarge Endure SR blend cement
    June 6, 2019
    Lafarge Cement – part of Aggregate Industries – has launched Lafarge Endure SR; a high performance, low carbon, CEM II blend cement. While traditional CEM I blends use virgin clinker to produce the finished cement, Lafarge Endure SR blends Portland fly ash (PFA) with clinker, which results in a lower embodied CO2, as well as improved plastic and hardened properties when used in concrete. Another benefit of using Lafarge Endure SR over a CEM I blend is its suitability for all ground types. Sulphates in