Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • High production recycling with Wirtgen
    July 14, 2021
    High throughput of quality material can be achieved using the latest KMA 240(i) unit from Wirtgen. The firm says that this unit allows material to be processed sustainably and close to the jobsite
  • Road recycling saves time and costs, reduces emissions
    February 13, 2012
    Stabilisers bring recycling improvements to roads in the UK and Armenia. The local road authorities near the UK city of Bath have saved nearly €250,500 on the cost of repairing a 400m long section of the B3110 Midford Road. This saving has been achieved by opting to recycle and strengthen in-situ the existing surface, instead of using conventional full depth pavement reconstruction.
  • Asphalt plant producers see major worldwide successes
    November 21, 2014
    Asphalt plant manufacturers report major supply deals for highway and construction projects - Pat Smith writes International asphalt plant manufacturers have been reporting major successes with their products, which are now working on highway and airport projects worldwide.
  • Cold milling popular for road materials recycling
    July 4, 2012
    Milling techniques remain one of the most widely used recycling methods Well-proven, cold milling techniques remain one of the most widely used methods for materials recycling in road construction. Milled road materials can be cleaned up and re-used in both asphalt and concrete highway construction. German firm Wirtgen has long dominated the market for road milling machines and has the largest share of the sector (as well as the broadest product range), although other firms based in Europe and the US are be