Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • RAP use in the US
    May 24, 2023
    According to the National Asphalt Paving Association (NAPA), the use of recycled asphalt pavement (RAP) is increasing in the US.
  • Recycling concrete runway saves time, money
    February 17, 2012
    Nashville International Airport in the US state of Tennessee has revamped its facilities following extensive upgrades being carried out on its oldest runway in a project worth some US$23 million. The airport authorities realised that to improve both capacity and safety a major improvement of runway 2L-20R was required, with full-depth reconstruction needed to provide the necessary structural strength and working life. Engineering firm Garver Aviation worked on the project to rehabilitate the portion of Runw
  • Lowering carbon emissions from cement and concrete production
    October 20, 2020
    Reducing carbon emissions from the energy intensive cement and concrete production sectors will help stop climate change
  • Rubber recycling for South African roads
    November 5, 2012
    South Africa takes crumb rubber use to the next level - *Anders Marschall Jensen The preservation of the environment is a global concept, and in the road construction industry, it is all about preservation of roads. In earlier days, roads were built with the primary goal of moving passenger traffic from one place to another, but these days, roads are very different. Not only is there passenger traffic, and more of it, but roads must also deal with extensive movement of products in heavy vehicles. Therefore,