Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • The industry’s most trusted brand in continuing education
    September 4, 2019
    With the release of an update catalogue of training and credential programmes available to road professionals worldwide, IRF has affirmed its role at the road industry’s most trusted brand in continuing education. For 70 years, an essential part of IRF’s mission has been the organisation and delivery of continuing education services that help strengthen human skills and contribute to the dissemination of knowledge and field expertise. Today, IRF’s curriculum of 40 certified courses provides technica
  • IPC Global's EN Standards Tester
    January 3, 2013
    IPC Global has launched the EN Standards Tester, a servo-hydraulic testing machine which allows users to carry out all the most popular EN12687 tests for asphalt mixtures on one machine. The EN Standards Tester offers a cost-effective alternative to Universal Testing Machines (UTMs), said IPC Global’s chief executive officer Kieran McGrane. “This machine has been targeted at a specific number of tests, therefore it is more compact and more economical,” he explained. “UTMs are used mostly by research organis
  • Innovative asphalt production solutions from Marini
    May 24, 2019
    Marini has developed an innovative solution for asphalt production, able to use up to 100% RAP in the mix - Mike Woof writes Italian firm Marini has long been one of the leaders in the field of asphalt plant design and development, competing against other key companies in the segment based in the US, Switzerland and Germany. Marini is expanding its range, with what it claims will be a revolutionary system for using recycled asphalt pavement (RAP) in asphalt mixes, as well as further additions to its mobi
  • Bitumen additives raise environmental questions
    February 14, 2012
    New products, including additives, are coming onto the market to help reduce the cost of producing bitumen. Patrick smith reports. According to Eng. Paolo Visconti of Iterchimica, environmental issues and the health and safety of operators of manufacturing plants and workers laying bituminous mixes have raised long debates on the possible harmfulness of fumes which are emitted when heating these mixes at the temperatures (160-180°C) required for their production. "If, on the one hand, the effects on operato