Skip to main content

Stiffer roads, less fuel?

Researchers at the Massachusetts Institute of Technology looked at how much fuel – and, hence carbon – could be saved by making roads in the US stiffer. They concluded that by resurfacing 10% of roads every year for the next 50 years, 0.5% of total transport emissions, or 440 megatons, would be saved over that period.
October 19, 2020 Read time: 3 mins
© Albertnowicki | Dreamstime.com

Extra fuel is burnt due to a number of pavement properties that impact on how the road surface and the vehicle interact. Friction is one of these – the higher the friction, the more fuel is burnt – and this is most relevant for cars.For trucks, deflection is more relevant; the weight of the vehicle causes the pavement to deflect and then fuel is required to push the vehicle up over the ‘bump’.

The MIT study, conducted by postdoctoral researcher Hessam Azarijafari, research scientist Jeremy Gregory, and principal research scientist in the Materials Research Laboratory Randolph Kirchain, concentrated on the deflection-induced effect.

Their argument is that while car traffic is likely to decrease, freight will increase. While this may not necessarily be true, it is likely that cars will be powered by renewable electricity at an earlier stage than trucks due to challenges around battery technology.

The researchers used data from 30 national databases to plug into their study and modelling. The climate of each state was also taken into consideration. In cold climates, such as Colorado, the roughness-induced excess fuel consumption is far more significant than deflection-based excess consumption – between six and 10 times more.

However, in warmer states deflection-induced consumption is three times that of friction-based consumption for asphalt pavements, although equal for concrete ones.

The study looked at ways of increasing pavement stiffness, or E modulus, such as adding fibres or carbon nanotubes or adjusting the mix design by changing the grading or type of aggregate and the properties of the binder. The analysis considered increasing the E modulus, by resurfacing at a rate of 10% of roads a year, to be equal to that of the 95th percentile of roads recorded in the Long-Term Pavement Performance (LTTP) database.

The researchers conclude that “the reduction in emissions from pavement use can be achieved with no changes in either 12 technology or manufacturing practices or the use of novel construction materials”. However, an increase in stiffness can have an adverse impact on other performance criteria such as cracking, something that is not considered in the report. There are many contributing and conflicting characteristics that impact on the whole life carbon impact of a road, not least the number of times it must be maintained.

Research and trials by the Danish Road Directorate which saw test sections paved from 2012, looked at reducing the frictional element of fuel wastage by changing the composition of the road surface to provide a low rolling resistance.

However, although the surfaces could deliver a fuel saving of around 6%, the test sections started ravelling within two years. Following more research, a new type of low rolling resistance asphalt is now under trial in Denmark, with a section laid in 2018.

For more information on companies in this article

Related Content

  • Wirtgen: low-emission recycling near Legoland
    March 22, 2024
    Wirtgen, Vögele and Hamm were on a section of the busy E45 highway close to the famous Legoland resort at Billlund, Denmark.
  • Arizona Chemical study reveals lower CO2 footprint with RAP additive
    May 18, 2015
    A life-cycle assessment has found that an asphalt mix containing a high percentage of reclaimed asphalt pavement (RAP) along with an additive by Arizona Chemical can produce a significantly lower carbon footprint than virgin asphalt mix or a mix containing a low percentage of RAP. The assessment study was carried out by third party Arthur D. Little, an international management consulting firm, using Arizona Chemical’s SYLVAROAD RP 1000 performance additive. The work noted that cradle-to-gate, a road aspha
  • NDT sensor fusion in structural pavement condition surveys
    February 27, 2017
    Early detection of pavement defects and the causes of deterioration is essential for effective maintenance planning, writes Dr Alena Uus* There is a need for optimisation and development of UK highway survey methods that would provide comprehensive information on the surface and subsurface pavement condition and operate at traffic speed, which eliminates the requirement for lane closures. Performance of non-destructive testing (NDT) methods commonly employed in pavement condition surveys can be potent
  • Preventive maintenance - preserving pavements
    February 14, 2012
    In the first article of a three-part series on preventive maintenance, Alan S. Kercher, of Kercher Engineering, highlights the value to road agencies of a properly implemented pavement preservation programme For many road agencies, the budget for maintenance, rehabilitation and reconstruction (MR&R) of their roads is focused mainly on the pavements that are in the worst condition. In the short term, this common approach may seem very logical. However, when focused on expensive structural improvements,