Skip to main content

Stiffer roads, less fuel?

Researchers at the Massachusetts Institute of Technology looked at how much fuel – and, hence carbon – could be saved by making roads in the US stiffer. They concluded that by resurfacing 10% of roads every year for the next 50 years, 0.5% of total transport emissions, or 440 megatons, would be saved over that period.
October 19, 2020 Read time: 3 mins
© Albertnowicki | Dreamstime.com

Extra fuel is burnt due to a number of pavement properties that impact on how the road surface and the vehicle interact. Friction is one of these – the higher the friction, the more fuel is burnt – and this is most relevant for cars.For trucks, deflection is more relevant; the weight of the vehicle causes the pavement to deflect and then fuel is required to push the vehicle up over the ‘bump’.

The MIT study, conducted by postdoctoral researcher Hessam Azarijafari, research scientist Jeremy Gregory, and principal research scientist in the Materials Research Laboratory Randolph Kirchain, concentrated on the deflection-induced effect.

Their argument is that while car traffic is likely to decrease, freight will increase. While this may not necessarily be true, it is likely that cars will be powered by renewable electricity at an earlier stage than trucks due to challenges around battery technology.

The researchers used data from 30 national databases to plug into their study and modelling. The climate of each state was also taken into consideration. In cold climates, such as Colorado, the roughness-induced excess fuel consumption is far more significant than deflection-based excess consumption – between six and 10 times more.

However, in warmer states deflection-induced consumption is three times that of friction-based consumption for asphalt pavements, although equal for concrete ones.

The study looked at ways of increasing pavement stiffness, or E modulus, such as adding fibres or carbon nanotubes or adjusting the mix design by changing the grading or type of aggregate and the properties of the binder. The analysis considered increasing the E modulus, by resurfacing at a rate of 10% of roads a year, to be equal to that of the 95th percentile of roads recorded in the Long-Term Pavement Performance (LTTP) database.

The researchers conclude that “the reduction in emissions from pavement use can be achieved with no changes in either 12 technology or manufacturing practices or the use of novel construction materials”. However, an increase in stiffness can have an adverse impact on other performance criteria such as cracking, something that is not considered in the report. There are many contributing and conflicting characteristics that impact on the whole life carbon impact of a road, not least the number of times it must be maintained.

Research and trials by the Danish Road Directorate which saw test sections paved from 2012, looked at reducing the frictional element of fuel wastage by changing the composition of the road surface to provide a low rolling resistance.

However, although the surfaces could deliver a fuel saving of around 6%, the test sections started ravelling within two years. Following more research, a new type of low rolling resistance asphalt is now under trial in Denmark, with a section laid in 2018.

For more information on companies in this article

Related Content

  • WJ Group opens US business in Atlanta
    August 17, 2023
    The US company will be called WJ Surface Treatments with Glenn Thompson as president.
  • Advanced soil compaction
    March 11, 2014
    From Caterpillar comes a new compaction system that is said to boost working efficiency. The innovative machine drive power (MDP) package is said to be an integrated soil compaction measurement technology that has been tested by contractors at several jobsites around the world. Now coming to market, the MDP package is one component of an intelligent compaction (IC) package from the firm. The IC technology includes integrated compaction measurement (with an accelerometer, or Cat’s MDP), a system that pro
  • Groundbreaking calculator of greenhouse gas emissions
    April 12, 2012
    IRF launches CHANGER, a groundbreaking calculator of greenhouse gas emissions from road construction. Our world is changing, our climate is changing. Industry too is changing to meet the new social, environmental and economic challenges of our times. Already, the road sector has taken a decisive lead in this respect by transforming its practices and adopting new, more eco-friendly techniques and technologies. CHANGER is the latest flagship project in this evolution: the sign of an indust
  • Zoomlion’s world record boom pump
    January 6, 2017
    Zoomlion has unveiled its innovative new truck-mounted concrete pump, which features a 101m boom. This innovative 101m unit is now a world record holder as the longest truck-mounted concrete boom pump. The machine was launched on the 20th anniversary of Zoomlion and is one of a new generation of products developed by Zoomlion and its Italian CIFA operation. The new machine has been developed from the existing 80m truck-mounted pumps, with its innovative lightweight composite boom being a key feature of the