Skip to main content

Stiffer roads, less fuel?

Researchers at the Massachusetts Institute of Technology looked at how much fuel – and, hence carbon – could be saved by making roads in the US stiffer. They concluded that by resurfacing 10% of roads every year for the next 50 years, 0.5% of total transport emissions, or 440 megatons, would be saved over that period.
October 19, 2020 Read time: 3 mins
© Albertnowicki | Dreamstime.com

Extra fuel is burnt due to a number of pavement properties that impact on how the road surface and the vehicle interact. Friction is one of these – the higher the friction, the more fuel is burnt – and this is most relevant for cars.For trucks, deflection is more relevant; the weight of the vehicle causes the pavement to deflect and then fuel is required to push the vehicle up over the ‘bump’.

The MIT study, conducted by postdoctoral researcher Hessam Azarijafari, research scientist Jeremy Gregory, and principal research scientist in the Materials Research Laboratory Randolph Kirchain, concentrated on the deflection-induced effect.

Their argument is that while car traffic is likely to decrease, freight will increase. While this may not necessarily be true, it is likely that cars will be powered by renewable electricity at an earlier stage than trucks due to challenges around battery technology.

The researchers used data from 30 national databases to plug into their study and modelling. The climate of each state was also taken into consideration. In cold climates, such as Colorado, the roughness-induced excess fuel consumption is far more significant than deflection-based excess consumption – between six and 10 times more.

However, in warmer states deflection-induced consumption is three times that of friction-based consumption for asphalt pavements, although equal for concrete ones.

The study looked at ways of increasing pavement stiffness, or E modulus, such as adding fibres or carbon nanotubes or adjusting the mix design by changing the grading or type of aggregate and the properties of the binder. The analysis considered increasing the E modulus, by resurfacing at a rate of 10% of roads a year, to be equal to that of the 95th percentile of roads recorded in the Long-Term Pavement Performance (LTTP) database.

The researchers conclude that “the reduction in emissions from pavement use can be achieved with no changes in either 12 technology or manufacturing practices or the use of novel construction materials”. However, an increase in stiffness can have an adverse impact on other performance criteria such as cracking, something that is not considered in the report. There are many contributing and conflicting characteristics that impact on the whole life carbon impact of a road, not least the number of times it must be maintained.

Research and trials by the Danish Road Directorate which saw test sections paved from 2012, looked at reducing the frictional element of fuel wastage by changing the composition of the road surface to provide a low rolling resistance.

However, although the surfaces could deliver a fuel saving of around 6%, the test sections started ravelling within two years. Following more research, a new type of low rolling resistance asphalt is now under trial in Denmark, with a section laid in 2018.

For more information on companies in this article

Related Content

  • Advanced technologies will increase the wear life of bitumen further
    February 28, 2012
    Bitumen has been used for thousands of years, but now a wide variety of products are available that can be added to it to produce blends with improved properties. According to the Refined Bitumen Association (RBA) bitumen is the oldest known engineering material. Indeed, the organisation says that its versatility as a construction material is unparalleled, and having been used as an adhesive, sealant and waterproofing agent for over 8,000 years, its uses include the construction and maintenance of roads, ai
  • Durability is crucial while warm mix technology can help disaster recovery
    February 21, 2013
    Why durability is crucial for both emerging and developed economies, and how warm mix technology can help disaster recovery - Kristina Smith reports. When CORE Construction, a 100% owned Ghanaian company, started working on road construction projects five years ago, it was difficult to source the right bituminous mixes. “In the past, most construction firms had a number of challenges when it came to bituminous works, since the local capacity was not well-developed,” said CORE CEO Frank Lartey. CORE’s soluti
  • New tests for modified bitumens and mixes with RAP
    December 19, 2014
    This month we learn about a new test which is helping to predict the performance of asphalt mixtures containing recycled materials and modifiers, and we showcase some of the new testing equipment recently launched - writes Kristina Smith Researchers in the US have come up with a new test to help owners and contractors better predict the performance of their roads. “The problem is that the current tests cannot determine the performance of new materials,” said Dr Haleh Azari, manager of the AASHTO Advanced P
  • Green solutions for safety road markings
    May 19, 2014
    Investigating the options for green roadmarkings solutions - *Dr Alexander Klein reports Global challenges such as climate change, urbanisation and aging societies are increasingly becoming more important in managing any industry today. Road markings must ensure traffic safety. But there are differences among them—in terms of functionality and performance and eco-friendliness. A certified life cycle assessment for major road marking materials and application technologies has found that cold plastic agglome