Skip to main content

Reduced pollution with locally sourced materials

Robert Petts provides a practical example of gTKP at work. There is a substantial requirement for a range of sealers and binders in the global road infrastructure sector. The principal need is for the construction and maintenance of road surfaces and pavements. Globally, more than 100 million tonnes of bitumen are produced each year, mostly for use in the road sector.
February 24, 2012 Read time: 5 mins

Robert Petts provides a practical example of gTKP at work

There is a substantial requirement for a range of sealers and binders in the global road infrastructure sector. The principal need is for the construction and maintenance of road surfaces and pavements. Globally, more than 100 million tonnes of bitumen are produced each year, mostly for use in the road sector.

There are substantial environmental disadvantages from the production of the currently used binders-sealers which are mainly fossil fuel (bitumen/asphalt) or cement based. These product types involve energy intensive production and long transport distances from large-scale production facilities to the point of application, often over roads possibly susceptible to damage from heavy vehicle loading.

This is a particular issue for Developing and Emerging economies which are predominantly consumers rather than producers of sealers and binders, and which have limited financial resources.

The 1612 International Energy Agency warns that the natural output from the world's oilfields is declining faster than previously thought. The temporary downturn in demand due to the current widespread recession will give way to renewed pressure on global fossil fuel resources and re-ignite energy prices in the medium term future. We thus have a window of opportunity to take stock of the predicament, to investigate and develop alternative greener and more sustainable solutions to our global binder and sealer needs.

For many developing countries, it is believed that a significant proportion of these imported raw materials and products could be substituted with locally sourced alternatives. Sealer/binder products could be made from materials arising from local agricultural and manufacturing operations, and waste streams from industrial activities and power generation. It may also be possible to provide demand for new agricultural crops without compromising current food crop production, by using marginal land or multiple cropping.
New manufacturing opportunities could be created to use appropriate technology to deliver suitable road building materials. Such innovation would stimulate local economies as well as reduce the carbon footprint of road building activities. There would also be potential for carbon sequestration as bio carbon would be bound within road surfaces for many decades.

The good news is that substantial progress has already been made and some commercial products are already on the market (see below). However this is only the start of what could become an important global, environmentally friendly, industry.

A recent gTKP report, 'Eco-Road Building for Emerging Economies,' is the result of a technology scouting exercise. The report may be downloaded from www.gtkp.com and an accompanying Transport PowerPoint presentation is also available. Six main technology areas with significant potential for beneficial exploitation for road surfacing and paving purposes have been identified. The following are interesting extracts from the report.

Wood or palm lignin: One of the most abundant organic polymers in the world, it contains 30% of non-fossil organic carbon, and about 50 million tonnes is produced annually as residue in paper production. In the form of Lignin sulphonate, a paper pulp industry waste stream, it has been used for about 100 years to control dust and stabilise gravel on unpaved roads in the USA and Sweden. Furthermore, the new biofuels industry is expected to deliver abundant fibrous lignin from palm oil extraction.

Drying oils and semi-drying oils: A 'drying oil' is an oil that hardens to a tough, solid film after a period of exposure to air, through a chemical polymerisation reaction in which oxygen is absorbed from the environment. This property is the basis of conventional paint technology. The cross linking process can be manipulated by catalysis heat and oxygen. Unsaturated vegetable oils are widely available from a range of oil seed crops and, through the new biofuel industry, non-food vegetable oils such as Jatropha are becoming available. It should be possible to devise waterproof sealing systems with sufficient resilience for low volume road surfacing.

Oil, resin and biomaterial blends: Recent innovations using blends and emulsions of pine pitch, rosin and vegetable oils have begun to reach commercial success as ecologically acceptable alternatives to bitumen based products (for example Vegecol and Ecopave). They appear to use a wide range of organic waste streams and may be adaptable to a variety of local resources. This is probably the most promising initial approach for replacement of bitumen/asphalt binders as both technology and experience in use is available.

Pozzolanas as cement substitutes and other waste streams: One of the most exciting opportunities is the replacement of Portland cement with rice husk pozzolanas and lime. Up to 130 million tonnes of husk could be available annually on a global basis for pozzolana production. As the ash content by weight is about 20%, there are potentially 26 million tonnes of Rice Husk Ash (RHA) available as a pozzolana. Other sources of pozzolanas include fly ash from power stations, kilns and furnaces. Apart from the attractions of cost and foreign exchange savings and zero net carbon footprint, there is scope for encouraging local low technology industries.

The report highlights potential leads relating to pine resin or tall oil, geotextile and biofibre reinforcement.

In summary, there is enormous potential to escape from the high-energy, environmentally damaging dependence on petro-chemical and cement-based industries, to develop sustainable, low carbon footprint solutions utilising local resources and initiate productive local employment in developing countries. This could create a fast-track solution to the universal provision of affordable, sustainable, basic access to the more than a billion people living in poverty in developing countries.

• For further information contact Rob Petts: %$Linker: Email 0 0 0 oLinkEmail [email protected] Rob Petts false mailto:[email protected] true false%>

For more information on companies in this article

Related Content

  • Green road construction project in Sweden
    June 1, 2020
    Skanska is a partner in a trial green road construction project in Sweden.
  • Polymer enhanced bitumen technology improves performance
    July 11, 2012
    As overall traffic volumes increase, the contribution from commercial vehicles with increased axle loads is growing, putting ever more strain on roads and highway maintenance budgets. Highway authorities are looking for products that will be able to cope better and are more cost effective over the life of a road. Technical innovation is the only way to answer this challenge effectively, says BP Bitumen, one of a number of specialist companies involved in bitumen technology.
  • Rainforest road repair and rehabilitation with stabilisation
    May 23, 2014
    A limited amount of aggregate and resources, including fuel, in the Riau province of Indonesia can challenge roadbuilders, but Indonesian contractor PT Harap Panjang overcame the obstacles on a recent project. The province rests in a tropical rainforest. The 2600mm of annual rainfall take a toll on the area’s roads, particularly those developed by oil company Chevron Pacific Indonesia. The remote roads were built to service Chevron operations, crucial to the economies of the city, region and country. The r
  • Innovative advances in warm Mix Asphalts
    February 1, 2013
    Rising energy costs and increased awareness of safety and environmental issues have encouraged the development of Warm Mix Asphalts (WMA), which are typically produced at temperatures of between 130°C and 145°C, compared with around 175°C for traditional Hot Mix Asphalt (HMA). WMAs are regularly used in many European countries, as well as both North and South America. The three most common ways to lower the working temperature of asphalt are: a) foaming technologies; b) wax additives; and c) chemical (surfa