Skip to main content

Albedo: reflections upon performance

Albedo can impact pavement performance by a factor of between 10-15%.
By Kristina Smith May 16, 2020 Read time: 3 mins
The less energy reflected, the more energy absorbed by pavement (photo courtesy NCAT)

Researchers at the National Centre for Asphalt Technology* (NCAT) and the National Concrete Pavement Technology Center in the US have carried out an extensive study into the albedo of asphalt and concrete pavements. Results of the study, which was commissioned by the Federal Highways Administration, were published in December.

The albedo of a pavements is its ability to reflect solar energy, measured on a scale of 1 to 10. Albedo, which the researchers found changes over time, impacts on the thermal behaviour and the performance of pavements.

“Both concrete and asphalt pavements are influenced by the temperature of the materials in them,” says Mike Heitzman, assistant director and senior research engineer at NCAT and one of the principal investigators for the research. “The less energy that is reflected, the more is absorbed by the pavement, the temperature changes and the pavement can behave differently. With asphalt pavements, the warmer they get, the softer they become.”

The research suggests that albedo can impact on pavement performance by a factor of between 10-15%. So, for instance, an asphalt pavement might experience 10% more cracking or rucking, according to Heitzman.

Researchers took readings in seven locations in different states, chosen to reflect a range of aggregates and climates. At each location, measurements were made for five asphalt roads and five concrete roads. “In the past, studies have been fairly limited to local areas,” explains Heitzman. “By having seven locations around the country, we had a great variety of aggregates to work with. That came to be very important for the asphalt pavements in particular.”

The aim of the research was to produce thermal models linked to albedo changes which could be plugged into design software. Findings were quite conclusive for aggregate pavements but less so for concrete. “With asphalt we were able to demonstrate that the coarse aggregate in the mix played a key role in the albedo of the pavement,” notes Heitzman.  One reason for this could be that in warmer, southern US states, black mould tends to grow on the concrete surface, darkening it, he explains.

Further research is required before the impact of albedo could become part of pavement design and testing, he says. It might also be more efficient to look at other factors which play a bigger role in performance enhancement and deterioration. “There are another 10 or 20 variables that influence performance that may be more relevant.”

More information is available on the NCAT website.

*The National Center for Asphalt Technology was set up in 1986 as a partnership between Auburn University and the National Asphalt Pavement Association (NAPA) Research and Education Foundation to provide practical research and development to meet the needs of maintaining US highway infrastructure. NCAT works with state highway agencies, the Federal Highway Administration and the highway construction industry to develop and evaluate new products, design technologies and construction methods that quickly lead to pavement improvements.

Related Content

  • Advances in materials testing
    April 10, 2012
    Quicker, better, more cost effective materials testing - Kristina Smith writes. Most developments in materials testing technology involve updating and upgrading existing machines, either to meet changes to standards or to satisfy new needs in the market. And occasionally, a manufacturer will come up with something completely new. PUMA - the precision unbound materials analyser - falls into the latter category. It has been developed by Cooper Research Technology and Nottingham Transportation Engineering Cen
  • Tensar’s Glasstex makes the grade in UK’s Smart Motorway upgrade
    February 27, 2017
    A Stress Absorbing Membrane Interlayer is delivering stronger, safer and more reliable surfaces for the UK’s M3 Smart Motorways project in the southern England.
  • The Path to Climate-Neutral Road Construction
    October 1, 2023
    Machine manufacturers and construction companies around the globe are currently searching for ways to achieve the goal of climate-neutral construction. The challenge here is to successively reduce emissions of CO2 and other harmful gases (summarized to CO2 equivalents: CO2e) around the world to zero over the coming decades. In the road construction sector, this transformation is inextricably linked to the improvement and further development of production and working processes. In the future, machines and construction materials will also be assessed based on the climate-harmful emissions arising from their production and use. However, the focus should not be on individual machines, but on the entire process leading up to the finished product – a road. Ultimately, the decisive factor is the emissions generated per kilometer of newly built or rehabilitated road – the “CO2e per work done”.
  • LED lighting delivering technical benefits
    April 30, 2015
    A new report from the Lighting Research Center* at Rensselaer Polytechnic Institute focuses on the benefits from switching to LED lighting technologies There is a rapidly changing landscape for roadway lighting worldwide, largely due to the widespread acceptance of light-emitting diode (LED) technology. In developed markets such as the US, this has opened up a universe of new possibilities regarding LED replacement lamps. There are 144 million high-intensity discharge (HID) lamps in the US, representing