Skip to main content

Face masks to breathe life into roads

Research at RMIT in Australia paves the way for used face masks in recycled concrete.
By David Arminas February 5, 2021 Read time: 3 mins
The new material, left, blends recycled concrete aggregate with small strips of shredded disposable face masks, as seen on the right (image courtesy RMIT)

Researchers in Australia say they have shown that single-use disposable face masks could be used successfully in recycled concrete aggregate for road paving.

The new road-making material is a mix of shredded used face masks and processed building rubble developed at RMIT University. The mixture meets civil engineering safety standards, according to a press release from the institute. RMIT University, formerly the Royal Melbourne Institute of Technology and Melbourne Technical College, is a public research university in Melbourne, Australia. It has been rated as the top art and design university in Australia.

Analysis shows the face masks help to add stiffness and strength to the final product which is designed for use is base layers of roads and pavements.

The researchers’ study will appear in the weekly journal Science of the Total Environment, published by Elsevier. According to the publication’s website, “Science of the Total Environment is an international multi-disciplinary journal for publication of novel, hypothesis-driven and high-impact research on the total environment, which interfaces the atmosphere, lithosphere, hydrosphere, biosphere and anthroposphere”.

“This initial study looked at the feasibility of recycling single-use face masks into roads and we were thrilled to find it not only works, but also delivers real engineering benefits,” said Mohammad Saberian, lead author of a report on the study. “We hope this opens the door for further research, to work through ways of managing health and safety risks at scale and investigate whether other types of PPE [personal protective equipment] would also be suitable for recycling.”

In Australia alone, about 3.15 million tonnes of recycled concrete aggregate (RCA) is added to stockpiles each year rather than being reused. The experimental study was conducted with a small amount of unused surgical face masks. It identified an optimal mixture – 1% shredded face masks to 99% RCA – that delivers on strength while maintaining good cohesion between the two materials.

The mixture performs well when tested for stress, acid and water resistance, as well as strength, deformation and dynamic properties, meeting all the relevant civil engineering specifications, noted the press release.

According to the study’s abstract, “for the first  time”, a series of experiments, including modified compaction, unconfined compression strength and resilient modulus tests, were conducted on the blends of different percentages of the  shredded face mask (SFM) added to the RCA for road base and sub-base applications. The experimental results show that RCA mixed with three different percentages - 1%, 2% and 3% - of SFM satisfied the stiffness and strength requirements for pavements base/sub-base.

The introduction of the shredded face mask not only increased the strength and stiffness but improved the ductility and flexibility of RCA/SFM blends. The inclusion of 1% SFM to RCA resulted in the highest values of unconfined compressive strength (216  kPa) and the highest resilient modulus (314.35 MP).

However, beyond 2%, increasing the amount of SFM led to a decrease in strength and stiffness.

A free download pdf is available now ahead of official publication later this year and some alterations may be made before then.

M. Saberian, J. Li, S. Kilmartin-Lynch, et al., Repurposing of COVID-19 single-use face masks for pavements base/sub-base, with co-authors RMIT Indigenous Pre-Doctoral Research Fellow Shannon Kilmartin-Lynch and Research Assistant Mahdi Boroujeni, is published in Science of the Total Environment (DOI: 10.1016/j.scitotenv.2021.145527).

In related work, the RMIT researchers said that they have also investigated the use of shredded disposable face masks as an aggregate material for making concrete, with promising preliminary findings.

Related Content

  • Bitumen tech: innovation for decarbonisation
    June 4, 2024
    Kristina Smith examines four new products and processes, including bio-bitumen produced from algae, designed to lower the carbon footprint of asphalt mixes.
  • TRA 2018: pavement additives can stretch a road’s lifespan
    May 9, 2018
    Glass fibre and old tyres can help reduce road wear, according to recent research. Alan Dron reports from the Transport Research Arena – TRA 2018 – event in Vienna. Environmental issues were close to the heart of many presentations at this year’s event at the Reed Exhibition Messe in the Austrian capital from April 16-19. This included decarbonisation – such as making engines more environmentally friendly – and the challenge of digitalisation to create a more efficient transport system.
  • The DURABROADS project targets safer mobility
    April 2, 2014
    The innovative DURABROADS project will help deliver a sustained reduction of fatalities in the long term, writes the ERF’s José Diez In 2012, Europe recorded the lowest number of fatalities since the first data were collected. All in all, fatalities were down by 9% in 2012, which means that 3,000 lives were saved that year. Should the current pace continue, we can be confident that the ambitious objective of reducing fatalities by 50% by 2020, compared to 2010, will be reached. To achieve the goals of
  • Empa tests string as bitumen replacement
    May 21, 2021
    The Swiss Federal Laboratories for Materials Testing and Research Centre (Empa) has been testing alternate layers of aggregate and string laid out by a robotic arm (photo courtesy Empa)