Skip to main content

Face masks to breathe life into roads

Research at RMIT in Australia paves the way for used face masks in recycled concrete.
By David Arminas February 5, 2021 Read time: 3 mins
The new material, left, blends recycled concrete aggregate with small strips of shredded disposable face masks, as seen on the right (image courtesy RMIT)

Researchers in Australia say they have shown that single-use disposable face masks could be used successfully in recycled concrete aggregate for road paving.

The new road-making material is a mix of shredded used face masks and processed building rubble developed at RMIT University. The mixture meets civil engineering safety standards, according to a press release from the institute. RMIT University, formerly the Royal Melbourne Institute of Technology and Melbourne Technical College, is a public research university in Melbourne, Australia. It has been rated as the top art and design university in Australia.

Analysis shows the face masks help to add stiffness and strength to the final product which is designed for use is base layers of roads and pavements.

The researchers’ study will appear in the weekly journal Science of the Total Environment, published by Elsevier. According to the publication’s website, “Science of the Total Environment is an international multi-disciplinary journal for publication of novel, hypothesis-driven and high-impact research on the total environment, which interfaces the atmosphere, lithosphere, hydrosphere, biosphere and anthroposphere”.

“This initial study looked at the feasibility of recycling single-use face masks into roads and we were thrilled to find it not only works, but also delivers real engineering benefits,” said Mohammad Saberian, lead author of a report on the study. “We hope this opens the door for further research, to work through ways of managing health and safety risks at scale and investigate whether other types of PPE [personal protective equipment] would also be suitable for recycling.”

In Australia alone, about 3.15 million tonnes of recycled concrete aggregate (RCA) is added to stockpiles each year rather than being reused. The experimental study was conducted with a small amount of unused surgical face masks. It identified an optimal mixture – 1% shredded face masks to 99% RCA – that delivers on strength while maintaining good cohesion between the two materials.

The mixture performs well when tested for stress, acid and water resistance, as well as strength, deformation and dynamic properties, meeting all the relevant civil engineering specifications, noted the press release.

According to the study’s abstract, “for the first  time”, a series of experiments, including modified compaction, unconfined compression strength and resilient modulus tests, were conducted on the blends of different percentages of the  shredded face mask (SFM) added to the RCA for road base and sub-base applications. The experimental results show that RCA mixed with three different percentages - 1%, 2% and 3% - of SFM satisfied the stiffness and strength requirements for pavements base/sub-base.

The introduction of the shredded face mask not only increased the strength and stiffness but improved the ductility and flexibility of RCA/SFM blends. The inclusion of 1% SFM to RCA resulted in the highest values of unconfined compressive strength (216  kPa) and the highest resilient modulus (314.35 MP).

However, beyond 2%, increasing the amount of SFM led to a decrease in strength and stiffness.

A free download pdf is available now ahead of official publication later this year and some alterations may be made before then.

M. Saberian, J. Li, S. Kilmartin-Lynch, et al., Repurposing of COVID-19 single-use face masks for pavements base/sub-base, with co-authors RMIT Indigenous Pre-Doctoral Research Fellow Shannon Kilmartin-Lynch and Research Assistant Mahdi Boroujeni, is published in Science of the Total Environment (DOI: 10.1016/j.scitotenv.2021.145527).

In related work, the RMIT researchers said that they have also investigated the use of shredded disposable face masks as an aggregate material for making concrete, with promising preliminary findings.

Related Content

  • Skanska and Kraton boost RAP use with called SYLVAROAD™ RP1000
    November 23, 2017
    The city of Västerås in central Sweden is known as a centre for industrial automation and information technology. Innovation abounds here and with it comes strong environmental efforts – meeting carbon reduction goals and maximising the recycling process, for example. A road construction project just outside this picturesque city highlights such innovation.
  • Arizona Chemical study reveals lower CO2 footprint with RAP additive
    May 18, 2015
    A life-cycle assessment has found that an asphalt mix containing a high percentage of reclaimed asphalt pavement (RAP) along with an additive by Arizona Chemical can produce a significantly lower carbon footprint than virgin asphalt mix or a mix containing a low percentage of RAP. The assessment study was carried out by third party Arthur D. Little, an international management consulting firm, using Arizona Chemical’s SYLVAROAD RP 1000 performance additive. The work noted that cradle-to-gate, a road aspha
  • Building green with nanotechnology
    June 23, 2021
    The results are out: Iterchimica and Directa Plus’ GiPave combines recycled plastic and nanotechnology to improve pavement performance across the board
  • Managing resource to create more resilient roads
    June 22, 2018
    As pressure increases on the cost and availability of resources, investment in recycling technology continues to grow across the road building industry. To meet its full potential, a greater understanding is needed of material performance to allow the building of more resilient, sustainable and economic networks - *David Smith explains. Over the past decade, the road construction industry has made significant strides in recycling. Reducing the reliance on virgin materials is of environmental importance,