Skip to main content

Recycling concrete runway saves time, money

Nashville International Airport in the US state of Tennessee has revamped its facilities following extensive upgrades being carried out on its oldest runway in a project worth some US$23 million. The airport authorities realised that to improve both capacity and safety a major improvement of runway 2L-20R was required, with full-depth reconstruction needed to provide the necessary structural strength and working life. Engineering firm Garver Aviation worked on the project to rehabilitate the portion of Runw
February 17, 2012 Read time: 3 mins
A major runway reconstruction at Tennessee International airport has benefited from the use of sophisticated software tools and innovative runway recycling methods
Nashville International Airport in the US state of Tennessee has revamped its facilities following extensive upgrades being carried out on its oldest runway in a project worth some US$23 million. The airport authorities realised that to improve both capacity and safety a major improvement of runway 2L-20R was required, with full-depth reconstruction needed to provide the necessary structural strength and working life.

Engineering firm 2815 Garver Aviation worked on the project to rehabilitate the portion of Runway 2L/20R south of crosswind Runway 13/31 and the project involved building a new concrete runway. Garver provided planning, design, bidding, and construction support and employed some of the latest construction technology, including sophisticated software tools from 4019 Bentley Systems to boost collaboration between the various team members. Using this advanced technology allowed Garver to meet a tight time schedule set by the airport authorities and the 2423 Federal Aviation Administration. Garver used a novel concrete-recycling method to re-use the old runway surface and save the client a considerable sum in materials.

Runway 2L/20R serves as the outbound runway for the airport's Surface Movement Guidance and Control System (SMGCS) and carries a significant portion of the site's cargo operations. However the 35-year old runway was suffering accelerated deterioration due to an alkali-silica reaction. During the project's preliminary stages, Garver approached the Metropolitan Nashville Airport Authority (MNAA) and requested a contract amendment to pursue additional runway testing to determine if the pavement would be suitable for a recycling process to convert old concrete into usable aggregate. After receiving approval, subconsultant KS Ware determined that the Recycled Concrete Aggregate (RCA) method could deliver the required aggregate strength and durability and also be resistant to the alkali-silica reaction.

The runway was closed, and construction crews demolished the pavement with a guillotine breaker. The broken out material was trucked to an on-site crushing and screening plant, pugmilled the blend to moisture condition it, and returned the aggregate to the project as a crushed material to provide a base course for the new runway. Approximately 2,134m of 457-914mm concrete pavement was recycled, including the steel dowel and reinforcement bars.

This process proved to be cost effective as there was no need to haul the concrete waste away from the airport. This was significant as it reduced the cost of aggregate placement from $26.91/ton for virgin material to $4.87/ton for the recycled concrete aggregate. According to Robert Ramsey, Metropolitan Nashville Airport Authority director, "Using the recycled concrete eliminated the need for trucking materials, provided cost savings, and enabled site work to be performed quickly. Garver returned a critical piece of our airfield back to service, and the entire process proved to be very successful." This project also included modifications to every taxiway touching the runway, 10.67m wide asphalt shoulders, full-length in-pavement centreline lights, touchdown zone lights for the 2L approach, drainage work, stormwater management, airfield signs, erosion and sediment control, and pavement markings.

For more information on companies in this article

Related Content

  • Salzburg runway rebuild completed
    September 6, 2019
    Salzburg Airport in Austria is now benefiting from a 2.75km runway, following major redevelopment work at the facility The new 2.75km runway was rebuilt following a total shutdown of flights at the airport for five weeks. The rebuilding work was assisted by the use of a compact crusher supplied by Linz-based Rubble Master. This unit was used to crush 8,500tonnes of material on-site at Salzburg Airport, with the material being immediately reused. "This job was a challenge due to its tight time schedule,"
  • Wirtgen group machines flying high at İstanbul Yeni Havalimanı
    May 21, 2018
    Plant and machines from Wirtgen, Vögele, Hamm and Benninghoven are playing a vital part in the construction of Istanbul’s new airport . Istanbul’s new airport is Turkey’s biggest infrastructure project ever. It is also expected to become the world's largest airport by estimated passenger numbers.
  • Cold recycling with foamed bitumen – an innovative technique
    November 7, 2017
    The pressure to conserve materials in road construction means that resource-saving technologies are more in demand than ever before. Wirtgen’s cold recycling process is already proven and has the potential to meet future demand. Roads subjected to continuous and heavy traffic often show signs of damage that extend down to the road base. To eliminate this damage, the entire road needs structural rehabilitation. Full reuse of the milled material as well as its cost-effective treatment make cold recycling with
  • Seal of approval
    August 2, 2012
    Timely maintenance using proven cost-effective methods can extend the life of a highway by many years as Patrick smith reports Highways are expensive assets to construct, and the wear and tear of modern traffic means that regular maintenance will delay costly repairs or in extreme cases reconstruction. There are a number of methods of carrying out such maintenance, and these include the use of slurry seals and micro-surfacing, which are cold mixed asphalt which is a mixture of graded aggregate, asphalt emul