Skip to main content

Fast, cost-effective road stabilisation

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares. The ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working
February 15, 2012 Read time: 3 mins
The ALLU Stabilisation System a Finnish invention, was used on an industrial area in Helsinki
Contractor 2655 Biomaa used ALLU for stabilising the foundation layers for an industrial area in the Finnish capital Helsinki

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares.

The 2180 ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working method for hardening and dynamic strengthening of soft soils as well as for improving the soil's deformation properties].

Lead contractor for the Helsinki job, Biomaa from Nurmijärvi, Finland, has many years of stabilisation experience. The sub-contractor at the job site was 2296 Skanska Infra.
"The combination of column stabilisation and mass stabilisation was the only way this area could be developed, as the soft clay can reach down to 18m on this area," explains development manager Ville Niutanen from Biomaa, who is also in charge of the project.

The material being treated was soft peat and clay which in some areas was very wet indeed (the top layer down to 3m was peat and after that the soft layer of clay started). The clay layer can be from 3-18m deep until the solid rock or moraine starts. The layer of clay was column stabilised and the peat layer was treated with mass stabilisation after the column stabilisation was done.

"The mass stabilisation done on top of column stabilisation ensures a surface that does not sink," Niutanen says.

The job started by removing stumps and roots, then a layer of fine sand was spread on top of the surface (approximately 150kg/m3) to improve the quality of the peat so that it stabilises better. On top of this a layer of crushed stone was placed to ensure that the column stabilisation machine moved over the location. The column stabilisation was carried out first through the clay layer to the rock or solid bottom. The columns end at the base of the peat layer, about 3m deep.
When the column stabilisation was completed the crushed stone layer was removed and the pre-mixing of the peat layer was started. In premixing, the fine sand was mixed with the peat, and after the peat was stabilised by feeding and mixing the binding agent evenly to the material.

The already stabilised layer was then covered with geotextile and about 100cm layer of crushed stone was placed on top as a preload embankment.

The binding agent used at the job site was cement. In column stabilisation the volume of binding agent was about 130kg/m3 and in mass stabilisation about 100kg/m3.

Depending on circumstances, in one day 800-1,000m3 was mass stabilised using one ALLU unit. The new ALLU PFM 10+10 pressure feeder was in use, and this can feed the binder as far as 200m from the trailer. Part of the time two ALLU PF 7 pressure feeders also worked at the site adding to the capacity.

"It was easy to bring the ALLU PFM to the job site and it saved a lot of time and money, because we did not have to build a road for it at the area where we needed to stabilise, says Niutanen.

For more information on companies in this article

Related Content

  • Circuit of the Americas Formula for F1 success
    April 4, 2013
    In November 2012, the new Circuit of the Americas (COTA) in Austin, Texas, hosted the first ever Formula 1 US Grand Prix on a purpose-built track. But, as Jeff Winke and Guy Woodford report, the construction of COTA was just as demanding as competing in an F1 race itself For COTA construction contractor Austin Bridge & Road, L.P., nothing was more vital to the successful building of the 5.5km F1 track than meeting the strict criteria for its asphalt-paved surface. “The amount of stress this pavement will un
  • Market bullish at bauma China 2016 exhibition
    February 1, 2017
    Key manufacturers reported a return to business confidence in China at the recent bauma China 2016 construction equipment exhibition The event was held at the Shanghai New International Expo Centre (SNIEC) and attracted 170,000 visitors from 149 countries, despite the cold weather and constant rain that plagued its first two days. The healthy attendance is a reflection of the gradually improving Chinese market. The Chinese economy suffered a slump in business levels in recent years, following a boom per
  • THIS is a Paving Project– The I-15 CORE
    December 20, 2012
    Provo, Utah – The scope of the I-15 Corridor Expansion Project (I-15 CORE) in the state of Utah is nearly unprecedented because of the size of the project and the short completion deadline. Twenty-four miles (38.6 km) of removal and replacement of Interstate 15 between Lehi and Spanish Fork, widening the number of traveling lanes by two, for up to six lanes in each direction in 35 months. The new 364 lane miles (586 km) of concrete roadway will be slipformed 12 or 12.5 inches (305 or 318 mm) thick for a tot
  • Uretek delivers voided soils treatment for UK’s M3 Smart Motorway
    February 8, 2018
    Ground engineering specialist Uretek has been treating voided soils as part of maintenance following completion of the UK’s M3 Smart Motorway project. Work is between junctions 2 and 4a where Uretek has provided a non-disruptive alternative to conventional underpinning to solve foundation subsidence problems. The focus for Uretek is an old 900mm corrugated pipe, 73m long. The old pipe has had a new 700mm pipe inserted inside. However, the old pipe is rusting and rapidly deteriorating.