Skip to main content

Fast, cost-effective road stabilisation

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares. The ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working
February 15, 2012 Read time: 3 mins
The ALLU Stabilisation System a Finnish invention, was used on an industrial area in Helsinki
Contractor 2655 Biomaa used ALLU for stabilising the foundation layers for an industrial area in the Finnish capital Helsinki

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares.

The 2180 ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working method for hardening and dynamic strengthening of soft soils as well as for improving the soil's deformation properties].

Lead contractor for the Helsinki job, Biomaa from Nurmijärvi, Finland, has many years of stabilisation experience. The sub-contractor at the job site was 2296 Skanska Infra.
"The combination of column stabilisation and mass stabilisation was the only way this area could be developed, as the soft clay can reach down to 18m on this area," explains development manager Ville Niutanen from Biomaa, who is also in charge of the project.

The material being treated was soft peat and clay which in some areas was very wet indeed (the top layer down to 3m was peat and after that the soft layer of clay started). The clay layer can be from 3-18m deep until the solid rock or moraine starts. The layer of clay was column stabilised and the peat layer was treated with mass stabilisation after the column stabilisation was done.

"The mass stabilisation done on top of column stabilisation ensures a surface that does not sink," Niutanen says.

The job started by removing stumps and roots, then a layer of fine sand was spread on top of the surface (approximately 150kg/m3) to improve the quality of the peat so that it stabilises better. On top of this a layer of crushed stone was placed to ensure that the column stabilisation machine moved over the location. The column stabilisation was carried out first through the clay layer to the rock or solid bottom. The columns end at the base of the peat layer, about 3m deep.
When the column stabilisation was completed the crushed stone layer was removed and the pre-mixing of the peat layer was started. In premixing, the fine sand was mixed with the peat, and after the peat was stabilised by feeding and mixing the binding agent evenly to the material.

The already stabilised layer was then covered with geotextile and about 100cm layer of crushed stone was placed on top as a preload embankment.

The binding agent used at the job site was cement. In column stabilisation the volume of binding agent was about 130kg/m3 and in mass stabilisation about 100kg/m3.

Depending on circumstances, in one day 800-1,000m3 was mass stabilised using one ALLU unit. The new ALLU PFM 10+10 pressure feeder was in use, and this can feed the binder as far as 200m from the trailer. Part of the time two ALLU PF 7 pressure feeders also worked at the site adding to the capacity.

"It was easy to bring the ALLU PFM to the job site and it saved a lot of time and money, because we did not have to build a road for it at the area where we needed to stabilise, says Niutanen.

For more information on companies in this article

Related Content

  • Innovations in aggregates production will boost quarry efficiency
    March 16, 2016
    New innovations are underway that will help optimise rock crushing and screening operations and boost quarry efficiency overall - Mike Woof writes. Quarrying is a tough industry that provides enormous challenges to equipment providers as machines and technology have to be rugged, durable and productive. Cutting the cost of production while optimising output has been a major target for suppliers, with new technologies playing an increasingly important role. Taking the long view with regard to increased qu
  • Asphalt: checking properties
    July 18, 2012
    Specialist equipment is available for carrying out a variety of important tests on asphalt It is important to know how asphalt will react to various conditions such as heat, cold and traffic loads when it is laid on roads. Project specifications will give detailed criteria of what is required, and companies will either ask outside laboratories to make sure the material meets the specs, or will often carry out such tests themselves with trained staff in an on-site laboratory. This will be equipped with the
  • Major advances are being seen in aggregate production technologies
    June 28, 2013
    Recent exhibitions have been launch venues for key developments in aggregate production technologies - Mike Woof reports Efficient production of aggregates is crucial for maintaining cost-effectiveness and also lowering material costs. With contractors owning many of their own quarry operations, these firms understand the benefits of reducing materials costs for their road construction projects. Major developments in the equipment for crushing, screening and washing aggregates are now coming to market and e
  • Special concrete paver for UK road job
    January 5, 2015
    A specially adapted Wirtgen SP25i concrete slipformer has been used on the M6 motorway near Cannock in the UK. The machine worked together with a Wirtgen ISF25i (independent side feeder) in order to pave a concrete slab under difficult conditions. With an overall length of 373km, the M6 is the longest and one of the most heavily congested motorways in the UK. The M6 connects the M1 motorway near Rugby with Carlisle near the Scottish border. But due to the steadily growing volume of traffic, the Highways