Skip to main content

Sophisticated slipformer control from Wirtgen

Wirtgen is now offering a new version of its concrete slipformer control package. This new tool offers additional capabilities and improved performance over the earlier version. The company claims that its upgraded Wirtgen AutoPilot 2.0 package can deliver a higher paving accuracy along with lower costs. Newly-developed, this package is said to produce a wide array of offset and inset profiles, while also delivering these more economically and precisely than with the previous version. The 3D system can eit
August 10, 2018 Read time: 4 mins
The system allows users to slipform complex layouts easily, according to the firm
Wirtgen is now offering a new version of its concrete slipformer control package. This new tool offers additional capabilities and improved performance over the earlier version.


The company claims that its upgraded 2395 Wirtgen AutoPilot 2.0 package can deliver a higher paving accuracy along with lower costs. Newly-developed, this package is said to produce a wide array of offset and inset profiles, while also delivering these more economically and precisely than with the previous version. The 3D system can either use an existing data model or can be used to generate a new, digital data model at the site.

Wirtgen supplies the AutoPilot 2.0 for the models SP 15/SP 15i and SP 25/SP 25i, while the system can also be retrofitted to machines already in use by customers.

Typical applications for the AutoPilot 2.0 system are for making concrete safety barriers, kerbs, traffic islands or for road surfaces with a width of up to 3.5m. The 3D control package comprises a computer integrated into the machine and a tablet attached to the Field Rover survey pole. Two GPS receivers are mounted on the machine and these communicate with a GPS reference station at the job site. The satellite-based navigation system (GNSS) controls the steering and cross slope of the slipform paver fully automatically. All that is needed is the reception of a sufficient number of satellites and an operator trained to handle the system. A key benefit is with surveying time as there is no need to set up, dismantle or maintain string lines. In addition, paving crews no longer need to take care working around a string line, which can be easily damaged.

Removing the string lines also means that the concrete mixers have more space for manoeuvring, making it easier to supply the slipform paver with material. There is also no need to generate a geodetic data model in advance and overall, works can be carried out more quickly and efficiently according to the firm.

Users can use the system to generate a virtual string line themselves on the job site with the intuitive software on the tablet. The design of the system means that users have two different methods to choose from. One option is for the user to import data from an existing 3D model onto the tablet and the package is designed so that it allows compatibility with other software types. The second option allows the user to plot the stretch to be paved with the Wirtgen Field Rover survey pole. The user then uses these plots to define individual measuring points. An important feature of the system is that the generating computes the optimum course on the basis of the measuring points, creating a virtual string line. However existing objects such as water inlets, lighting or road signage can be taken into account and the virtual string line modified as required.


The software also features tools that can be used in a similar way as setting up a conventional string line. To achieve the best paving quality, the software automatically tests the imported or newly created data for kinks affecting steering and height control and displays these on the tablet. The user can then correct unwanted kinks in the model data by rounding them with a few simple steps on the touchscreen using graphic editors.

After quality testing, the tablet is connected to the machine control of the slipform paver and the design generated is put into the machine’s control system. The concrete paver then starts on its own at the specified starting point and progresses automatically along the predefined course.

The firm claims that the simplicity of the system means that users are able to create designs, check data and pave complex layouts in a short time, using the tablet. Existing objects on the job site can be included quickly and easily into the data. Meanwhile, users retain full control and can intervene in the autonomous paving process at any time.

For more information on companies in this article

Related Content

  • New control system and software from IPC Global
    December 12, 2018
    CONTROLS Group company IPC Global has updated both its controls system and testing software. IMACS2 is its third-generation Integrated Multi-Axis Control and data-acquisition System (IMACS). UTS Neutron is the second-generation dynamic materials testing and analysis software. IMACS2’s attributes include 24bit data resolution, up-to 200kHz data sampling, 5 to 25kHz loop closure and an in-built colour display. “You can be assured that your tests are performed with minimum variability, precisely to specific
  • Topcon: A revolution in construction technology’s coming
    July 7, 2021
    The construction equipment industry is at a turning point. Topcon’s senior leaders believe that we are about to see a huge surge in the adoption of new construction technologies. The time is ripe as a new, younger and more tech-savvy generation comes to the fore. Governments could save billions, and where does the smartphone fit in?
  • Mongolia’s capital Ulaanbaatar is redeveloping its airport
    August 23, 2016
    Mongolia’s economy is growing fast, with capital Ulaanbaatar the centre for activity. Being landlocked, the country depends heavily on aviation to carry passengers and cargo. The existing Chinggis Khaan International Airport was built in 1956 and upgraded in 1987 and 1997 for international traffic. But the old airport cannot meet demands and boosting the country’s capacity to handle flights is essential. The New Ulaanbataar International Airport (NUBIA) will triple passenger capacity to approximately 3
  • 10 years of smart excavation
    March 6, 2024

    It is now 10 years since Komatsu introduced its intelligent machine control technology intended to help customers achieve more work in less time and with higher quality.