Skip to main content

Glaringly good glare panels from Korean manufacturer ETI

Unbreakable glare panels from Korean company ETI literally bounce back from an accident, according to the manufacturer. The panels are made from EVA, an elastomeric polymer that is soft to the touch and extremely flexible, akin to rubber. It is popularly known as an expanded rubber or foam rubber and is extremely resilient with good clarity and gloss and stress-crack resistance. Products using EVA include ski boots, bicycle saddles, wakeboards and water skis. These properties make ETI’s glare panels suit
April 4, 2018 Read time: 2 mins
Unbreakable glare panels from Korean company 2366 ETI literally bounce back from an accident, according to the manufacturer.


The panels are made from EVA, an elastomeric polymer that is soft to the touch and extremely flexible, akin to rubber. It is popularly known as an expanded rubber or foam rubber and is extremely resilient with good clarity and gloss and stress-crack resistance. Products using EVA include ski boots, bicycle saddles, wakeboards and water skis.

These properties make ETI’s glare panels suitable for mounting on crash barriers in the medians of divided highways, for example, explained Rich Choi, a director of ETI – Evolution in Traffic Innovation. The panels are spaced along the barrier to stop headlamp glare from oncoming vehicles blinding or annoying drivers.

“The panels have also been tested to withstand extremely high temperatures, such as 70°C for 200 hours. This makes them suitable for countries with extremely hot temperatures.”

The tapered panels stand around 650mm high, about 300mm wide and 70mm thick at the bottom where they can be quickly bolted onto the top of the barrier. Various bracket types are available for the different barrier types, such as concrete, w-beam and roller.

Importantly, the panels have wind holes to make them stable in high winds.

For more information on companies in this article

Related Content

  • CET opens new laboratory to service UK’s infrastructure projects
    October 23, 2017
    With over £300 billion of investment in infrastructure planned over the next four years in the UK, materials testing firm CET is gearing up to service a lot more projects – Kristina Smith visited the newest laboratory near Heathrow to find out more. The CET Group has ambitious plans. Over the next four years it wants to double the size of its business, which in the last year turned over £27 million. “There’s a lot of positivity out there,” said Gary Corrigan, managing director of the group’s infrastructu
  • Diamond in the Pearl: China’s Hong Kong-Zhuhai-Macao Bridge complex
    March 8, 2018
    People in the Pearl River Delta are celebrating the Chinese New Year with the imminent opening of the Hong Kong-Zhuhai-Macao Bridge. David Arminas reviews progress. China’s Spring Festival, or Lunar New Year, is celebrated with the usual enthusiasm and spectacular fireworks. But celebrations will be particularly joyous for many people in the southern Pearl River Delta. The soon-to-be-open Hong Kong-Zhuhai-Macao Bridge (HZMB) will slash travel time between the Hong Kong Special Administrative Region, Zhuh
  • Self-healing roads, slippery roads and slimmer roads
    November 24, 2017
    This month’s bitumen technology pages bring you self-healing roads, slippery roads and slimmer roads and explains why one UK contractor has started manufacturing its own polymer modified bitumen - Kristina Smith reports. Professor Erik Schlangen, who heads up experimental micromechanics at the Delft University of Technology is receiving calls from all round the world these days. And it is hardly surprising because he and his team have invented a great new technology: asphalt that heals itself.
  • Road repairs take to the air
    November 29, 2018
    Automated road repairs using 3D printing could save money and reduce disruption, reports Kristina Smith It’s the middle of the night and in the street below a team is busy carrying out repairs to the road surface. But there isn’t a human in sight. A road-repair drone has landed at the site of a crack and a 3D asphalt printer is now busy filling in that crack. A group of traffic cone drones have positioned themselves around the repair location to protect the repair drone and divert traffic around it.