Skip to main content

CONTROLS tackles fibre-reinforced concrete with new testing system

Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings. However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specim
July 19, 2017 Read time: 2 mins
Configuration of ADVANTEST controls system with flexural testing frame
Fibre-reinforced concrete (FRC) has long been used for road pavements and is now a common material for civil engineering applications such as precast tunnel segments and sprayed concrete linings.


However, testing FRC is challenging because the fibres – which are usually steel or macro-synthetic – rupture suddenly, causing the specimen to lose its bearing capacity. During this critical phase any sudden release of elastic energy by the frame of the testing machine may cause the premature rupture of the specimen and the consequent loss of the test results. For this reason, the International Standards require a minimum frame stiffness of 200 kN/mm.

2139 CONTROLS has recently added to its range of flexural testing frames with a new 200 kN capacity model especially designed to test FRC and sprayed concrete specimens, exceeding the Standards' stiffness requirements. The additional stiffness comes from the construction of the frame sections and the layout which keeps the specimen aligned with the frame crossbeams maximising structural rigidity. The new layout also allows easier frontal specimen loading and positioning, according to CONTROLS. It can accommodate large specimens such as slabs, flagstones, concrete beams and kerbs up to 650mm long. The frame is fitted with a high-accuracy load cell and can be provided with a LDT displacement transducer to read piston travel.

For more information on companies in this article

Related Content

  • Tunnel waterproofing solutions
    February 29, 2012
    Tunnels are the highest value assets on a highway, making their operation, safety and maintenance of paramount importance. Patrick Smith reports
  • New machines boost concrete paving performance and accuracy
    July 21, 2015
    New concrete paving machines offer greater versatility as well as performance – Mike Woof writes GOMACO said that its Next Generation Commander III paver has been designed to increase safety and all-round visibility, while offering improved performance. This four track paver benefits from the firm’s latest G+ Connect technology as well as 3D guidance options. A key to the improved performance is the G+ control system while the machine also has power from a quiet, low-emission Tier 4 engine. Fuel consumption
  • Ground penetrating radar used to investigate tunnel deterioration
    May 13, 2015
    Using ground penetrating radar to determine reason for serious pavement settling in Kentucky-Tennessee tunnel Just a few years after the opening of the Cumberland Gap Tunnel, highway officials noticed moderate to severe settling of the continuously reinforced concrete pavement. The mountain tunnel provides an important link between Kentucky and Tennessee along US25E and the problem looked serious, with many voids discovered beneath the pavement surface. To investigate the problems, the Kentucky Transpor
  • Shaking all over: controlled frequency vibration for concrete
    November 28, 2018
    The use of controlled frequency vibration for concrete continues to grow, writes Paul Jaworski Controlled frequency vibration (CFV) technology has been around since the mid-1990s for concrete pavement applications. The technology has seen a gradual increase in acceptance, particularly in certain applications. For the 0- to 37mm (1.5”) slump pavement mix designs, many contractors were experiencing material separation due to speeds over 8,000vibrations/minute (VPM). With the wide variability of concrete